Real-time spectroscopic ellipsometry as an in-situ probe of the growth dynamics of amorphous and epitaxial crystal silicon for photovoltaic applications

2005 ◽  
Vol 862 ◽  
Author(s):  
D.H. Levi ◽  
C.W. Teplin ◽  
E. Iwaniczko ◽  
Y. Yan ◽  
T.H. Wang ◽  
...  

AbstractIn this paper we report on our work using in-situ real time spectroscopic ellipsometry (RTSE) to study the dynamics of hot-wire chemical vapor deposition (HWCVD) of hydrogenated amorphous silicon (a-Si:H) and epitaxial crystal silicon (epi-Si) for photovoltaic applications. We utilize RTSE as both an in-situ diagnostic and a postgrowth analysis tool for a-Si:H/crystalline silicon heterojunction (SHJ) solar cells and epi-silicon films grown by HWCVD. RTSE enables precise thickness control of the 3 to 10 nm thick layers used in the SHJ devices, as well as monitoring crystallinity and surface roughness in real time. With the assistance of in-situ RTSE feedback we have achieved a photovoltaic energy conversion efficiency of 17% on an Al-backed p-type float-zone c-Si wafer. Open-circuit voltages above 650 mV indicate excellent passivation of the c-Si surface by the a-Si:H intrinsic layer. We have used RTSE to obtain information on the degree of crystallinity and the electronic and optical properties of films as a function of deposition conditions. RTSE has indirectly indicated the persistence of a hydrogen layer at the interface between the a-Si:H layer and the crystal silicon substrate. Absorption spectra determined by RTSE have provided guidance in device optimization.We are also applying in-situ RTSE to study the dynamics of HWCVD growth of epi-Si. The goal of this work is to develop low-temperature methods for growing 2-10 μmthick layers of c-Si on c-Si seed layers on glass for solar cell applications. This study presents unique challenges for RTSE, as perfect epitaxial growth of c-Si on a c-Si wafer would produce no change at all in the RTSE spectra. We have found that by monitoring the pseudo-dielectric function in real time during growth we gain immediate feedback on the breakdown of epi-Si growth. Post-deposition analysis of the RTSE data provides quantitative information on the percent of c-Si and a-Si versus film thickness. The RTSE analysis has been confirmed by cross sectional TEM. Based on the rapid feedback provided by RTSE we have surpassed the previous HWCVD maxiumum of 200 nm of epi-Si growth, achieving a maximum thickness of 500 nm of epi-Si. TEM analysis has shown that micron-sized areas of these films achieve 1000 nm of epi-Si thickness.

2004 ◽  
Vol 808 ◽  
Author(s):  
D.H. Levi ◽  
C.W. Teplin ◽  
E. Iwaniczko ◽  
R.K. Ahrenkiel ◽  
H.M. Branz ◽  
...  

ABSTRACTWe have applied real-time spectroscopic ellipsometry (RTSE) as both an in-situ diagnostic and post-growth analysis tool for hydrogenated amorphous silicon (a-Si:H)/crystalline silicon (c-Si) heterojunction with intrinsic thin-layer (HIT) solar cells grown by hot-wire chemical vapor deposition. RTSE enables precise thickness control of the 5 to 25 nm layers used in these devices, as well as monitoring crystallinity and surface roughness in real time. Utilizing RTSE feedback, but without extensive optimization, we have achieved a photovoltaic energy conversion efficiency of 14.1% on an Al-backed p-type Czochralski c-Si wafer coated with thin i and n layers on the front. Open-circuit voltages above 620 mV indicate effective passivation of the c-Si surface by the a-Si:H intrinsic layer. Lifetime measurements using resonant coupled photoconductive decay indicate that surface recombination velocities can approach 1 cm/s. RTSE and transmission electron microscopy show that the intrinsic a-Si:H i-layers grow as a mixture of amorphous and nano-crystalline silicon.


2002 ◽  
Vol 715 ◽  
Author(s):  
Dean H. Levi ◽  
Brent P. Nelson ◽  
John D. Perkins

AbstractIn-situ real-time spectroscopic ellipsometry (RTSE) provides detailed information on the evolution of the structural and optical properties of Si:H films during film growth. We have used in-situ RTSE to characterize the film morphology and crystallinity of hot-wire CVD (HWCVD) Si:H films as a function of hydrogen dilution R=[H]/[H+SiH4], substrate temperature Ts, and film thickness db. Transitions from one mode of film growth to another are indicated by abrupt changes in the magnitude of the surface roughness during film growth. The degree of crystallinity of the film can be determined from the bulk dielectric function. We have studied the growth parameter space consisting of R from 0 to 12, Ts from 150°C to 550°C, and db from 0 to 1 um. For each set of R and Ts values, the structural evolution of the film can be characterized by the shape of the surface roughness thickness ds versus bulk thickness db curve. In contrast to studies done by Collins et al on PECVD growth of Si:H films, our studies of HWCVD growth find no conditions where ds remains constant after coalescence of the initial nucleation centers. Most of the films grown within the range of parameters studied exhibit a secondary nucleation and coalescence signature. The transition between a-Si:H and uc-Si:H growth is near the R=3 to R=4 dividing line. Initial coalescence of purely uc-Si:H material doesn't occur until R>8. We have verified the RTsE crystallinity classification using ex-situ Raman scattering.


2000 ◽  
Vol 619 ◽  
Author(s):  
Y. Gao ◽  
A.H. Mueller ◽  
E.A. Irene ◽  
O. Auciello ◽  
A.R. Krauss ◽  
...  

ABSTRACTAn in situ study of barrier layers using spectroscopic ellipsometry (SE) and Time-of-Flight (ToF) mass spectroscopy of recoiled ions (MSRI) is presented. First the formation of copper silicides has been observed by real-time SE and in situ MSRI in annealed Cu/Si samples. Second TaSiN films as barrier layers for copper interconnects were investigated. Failure of the TaSiN layers in Cu/TaSiN/Si samples was detected by real-time SE during annealing and confirmed by in situ MSRI. The effect of nitrogen concentration on TaSiN film performance as a barrier was also examined. The stability of both TiN and TaSiN films as barriers for electrodes for dynamic random access memory (DRAM) devices has been studied. It is shown that a combination of in situ SE and MSRI can be used to monitor the evolution of barrier layers and detect the failure of barriers in real-time.


Sign in / Sign up

Export Citation Format

Share Document