scholarly journals Modeling Fermi Level Effects in Atomistic Simulations

2002 ◽  
Vol 717 ◽  
Author(s):  
Zudian Qin ◽  
Scott T. Dunham

AbstractIn this work, variations in electron potential are incorporated into a Kinetic Lattice Monte Carlo (KLMC) simulator and applied to dopant diffusion in silicon. To account for the effect of dopants, the charge redistribution induced by an external point charge immersed in an electron (hole) sea is solved numerically using the quantum perturbation method. The local carrier concentrations are then determined by summing contributions from all ionized dopant atoms and charged point defects, from which the Fermi level of the system is derived by the Boltzmann equation. KLMC simulations with incorporated Fermi level effects are demonstrated for charged point defect concentration as a function of Fermi level, coupled diffusion phenomenon and field effect on doping fluctuations.

1987 ◽  
Vol 104 ◽  
Author(s):  
T. Y. Tan ◽  
U. Gösele ◽  
B. P. R. Marioton

ABSTRACTRecently available Ga-Al interdiffusion results in GaAs/AlAs superlattices allow to conclude that Ga self-diffusion in GaAs is carried by triply-negatively charged Ga vacancies under intrinsic and n-doping conditions. The mechanism of the Si enhanced superlattice disordering is the Fermi-level effect which increases the concentrations of the charged point defect species. For the effect of the p-dopants Be and Zn, the Fermi-level effect has to be considered together with dopant diffusion induced Ga self-interstitial supersaturation or undersaturation. Self-diffusion of Ga in GaAs under heavy p-doping conditions is governed by positively charged Ga self-interstitials.


2021 ◽  
pp. 336-345
Author(s):  
Geoffrey Brooker

“The chemical potential for a semiconductor” deals with the way in which the chemical potential (Fermi level) of a semiconductor is affected: by the densities of states in the bands; by temperature; and by doping. The electron–hole product is usually independent of doping but sensitive to temperature. The chemical potential is worked out numerically for an example case, and is shown to be most sensitive to doping.


2020 ◽  
Vol 10 (18) ◽  
pp. 6285-6298 ◽  
Author(s):  
Snehaprava Das ◽  
Sulagna Patnaik ◽  
Kulamani Parida

The Ni Al LDH–CuFe2O4 p–n heterojunction, through vacuum energy level bending, inhibits electron hole recombination and enhances photocatalytic activity.


2000 ◽  
Vol 647 ◽  
Author(s):  
M. Strobel ◽  
K.-H. Heinig ◽  
W. Möller

AbstractIon implantation, specified by parameters like ion energy, ion fluence, ion flux and sub-strate temperature, has become a well-established tool to synthesize buried low-dimensional nanostructures. In general, in ion beam synthesis the evolution of nanostructures is determined by the competition between ballistic and thermodynamic effects. A kinetic 3D lattice Monte-Carlo model is introduced, which allows for a proper incorporation of collisional mixing and phase separation within supersaturated solid-solutions. It is shown, that for both the ballistically and thermodynamically dominated regimes, the Gibbs-Thomson relation is the key ingredient in understanding nanocluster evolution. Various aspects of precipitate evolution during implantation, formation of ordered arrays of nanophase domains by focused ion implantation and compound nanocluster synthesis are discussed.


1999 ◽  
Vol 5 (S2) ◽  
pp. 94-95
Author(s):  
O. Kienzle ◽  
F. Ernst ◽  
Manfred Rühle

The electrical properties of SrTiO3 (strontium titanate) ceramics are strongly influenced or even dictated by grain boundary segregation of charged point defects, such as dopant atoms, impurities, vacancies, or self-interstitials. The atomistic structure of the grain boundaries, their energy, and the segregation of point defects mutually depend on each other. Grain boundary segregation of charged point defects induces the formation of space charge layers in the adjoining crystals. In order to investigate the relation between grain boundary structure and composition, grain boundaries in Fedoped SrTiO3 bicrystals and in SrTiO3 ceramics were studied by HRTEM and by AEM with subnanometer resolution.Quantitative HRTEM served to investigate the atomistic structure of Σ=3, (111) grain boundaries in Fe-doped SrTiO3 bicrystals with a doping level of Fe/Ti= 0.04at% (Fig. 1). Analysis of the translation state revealed that the Σ=3, (111) grain boundary has an excess volume: normal to the boundary plane, the spacing between the two crystals exceeds what one would expect from a coincidence site lattice model by (0.06 ±0.01 )nm.


1983 ◽  
Vol 47 (8) ◽  
pp. 655-657 ◽  
Author(s):  
V.M Asnin ◽  
V.I Stepanov ◽  
R Zimmermann ◽  
M Rösler
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document