Fracture and Fatigue Behavior of a Self-Healing Polymer Composite

2002 ◽  
Vol 735 ◽  
Author(s):  
Eric N. Brown ◽  
Jeffrey S. Moore ◽  
Scott R. White ◽  
Nancy R. Sottos

ABSTRACTInspired by biological systems, in which damage triggers an autonomous healing response, a polymer composite material that can heal itself when cracked has been developed. The material consists of an epoxy matrix composite, which utilizes embedded microcapsules to store a healing agent and an embedded catalyst. This paper investigates issues of fracture and fatigue consequential to the development and optimization of this new class of materials. When damage occurs, the propagating crack ruptures the microcapsules, which releases healing agent into the crack plane. Polymerization of the healing agent is triggered by contact with exposed catalyst, which bonds the crack faces closed. The efficiency of crack healing is defined as the ability of a healed sample to recover fracture toughness. Healing efficiencies of over 90% have been achieved. Embedded microcapsules significantly increase the fracture toughness and reduce the fatigue crack propagation rate of epoxy. Fracture mechanisms for neat epoxy and epoxy with embedded microcapsules are presented.

2021 ◽  
pp. 105678952110112
Author(s):  
Kaihang Han ◽  
Jiann-Wen Woody Ju ◽  
Yinghui Zhu ◽  
Hao Zhang ◽  
Tien-Shu Chang ◽  
...  

The cementitious composites with microencapsulated healing agents have become a class of hotspots in the field of construction materials, and they have very broad application prospects and research values. The in-depth study on multi-scale mechanical behaviors of microencapsulated self-healing cementitious composites is critical to quantitatively account for the mechanical response during the damage-healing process. This paper proposes a three-dimensional evolutionary micromechanical model to quantitatively explain the self-healing effects of microencapsulated healing agents on the damage induced by microcracks. By virtue of the proposed 3 D micromechanical model, the evolutionary domains of microcrack growth (DMG) and corresponding compliances of the initial, extended and repaired phases are obtained. Moreover, the elaborate studies are conducted to inspect the effects of various system parameters involving the healing efficiency, fracture toughness and preloading-induced damage degrees on the compliances and stress-strain relations. The results indicate that relatively significant healing efficiency, preloading-induced damage degree and the fracture toughness of polymerized healing agent with the matrix will lead to a higher compressive strength and stiffness. However, the specimen will break owing to the nucleated microcracks rather than the repaired kinked microcracks. Further, excessive higher values of healing efficiency, preloading-induced damage degree and the fracture toughness of polymerized healing agent with the matrix will not affect the compressive strength of the cementitious composites. Therefore, a stronger matrix is required. To achieve the desired healing effects, the specific parameters of both the matrix and microcapsules should be selected prudently.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
S. A. McDonald ◽  
S. B. Coban ◽  
N. R. Sottos ◽  
P. J. Withers

AbstractStructural polymeric materials incorporating a microencapsulated liquid healing agent demonstrate the ability to autonomously heal cracks. Understanding how an advancing crack interacts with the microcapsules is critical to optimizing performance through tailoring the size, distribution and density of these capsules. For the first time, time-lapse synchrotron X-ray phase contrast computed tomography (CT) has been used to observe in three-dimensions (3D) the dynamic process of crack growth, microcapsule rupture and progressive release of solvent into a crack as it propagates and widens, providing unique insights into the activation and repair process. In this epoxy self-healing material, 150 µm diameter microcapsules within 400 µm of the crack plane are found to rupture and contribute to the healing process, their discharge quantified as a function of crack propagation and distance from the crack plane. Significantly, continued release of solvent takes place to repair the crack as it grows and progressively widens.


2007 ◽  
Vol 5 (18) ◽  
pp. 95-103 ◽  
Author(s):  
Jason M Kamphaus ◽  
Joseph D Rule ◽  
Jeffrey S Moore ◽  
Nancy R Sottos ◽  
Scott R White

Using self-healing materials in commercial applications requires healing chemistry that is cost-effective, widely available and tolerant of moderate temperature excursions. We investigate the use of tungsten (VI) chloride as a catalyst precursor for the ring-opening metathesis polymerization of exo- dicyclopentadiene ( exo -DCPD) in self-healing applications as a means to achieve these goals. The environmental stability of WCl 6 using three different delivery methods was evaluated and the associated healing performance was assessed following fracture toughness recovery protocols. Both as-received and recrystallized forms of the WCl 6 resulted in nearly complete fracture recovery in self-activated tests, where healing agent is manually injected into the crack plane, at 12 wt% WCl 6 loading. In situ healing using 15 wt% microcapsules of the exo -DCPD produced healing efficiencies of approximately 20%.


2014 ◽  
Vol 636 ◽  
pp. 73-77 ◽  
Author(s):  
Xin Hua Yuan ◽  
Qiu Su ◽  
Li Yin Han ◽  
Qian Zhang ◽  
Yan Qiu Chen ◽  
...  

Microencapsulated E-51 epoxy resin healing agent and phthalic anhydride latent curing agent were incorporated into E-44 epoxy matrix to prepare self-healing epoxy composites. When cracks were initiated or propagated in the composites, the microcapsules would be damaged and the healing agent released. As a result, the crack plane was healed through curing reaction of the released epoxy latent curing agent. In the paper, PUF/E-51 microcapsules were prepared by in-situ polymerization. The mechanical properties of the epoxy composites filled with the self-healing system were evaluated. The impact strength and self-healing efficiency of the composites are measured using a Charpy Impact Tester. Both the virgin and healed impact strength depends strongly on the concentration of microcapsules added into the epoxy matrix. Fracture of the neat epoxy is brittle, exhibiting a mirror fracture surface. Addition of PUF/E-51 microcapsules decreases the impact strength and induces a change in the fracture plane morphology to hackle markings. In the case of 8.0 wt% microcapsules and 3.0 wt% latent hardener, the self-healing epoxy exhibited 81.5% recovery of its original fracture toughness.


Author(s):  
Jones Nji ◽  
Guoqiang Li

This paper investigated the impact properties of a novel polymer composite material with a potential to repeatedly self-heal impact damage in FRP vessels. The composite was fabricated by first dispersing copolyster thermoplastic particles in a shape memory polymer (SMP) matrix, and then reinforcing the material with three-dimensional (3D) woven glass fibers. Specimens of the reinforced composite with dimensions of 152 mm × 101 mm × 12.7 mm were produced by machining and divided into two groups (G1 and G2). G1 specimens were subjected to several impact/healing test cycles with 42 J of impact energy. G2 specimens were subjected to repeated impact test cycles with no healing at the same energy level. A third group of specimens without thermoplastic particles (G3), with identical dimensions as G2 was also produced and tested in a similar manner as G2 to evaluate the effects of thermoplastic particles on impact resistance. G2 specimens were perforated at the 40th impact while G3 specimens were perforated at the 27th impact. G1 specimens lasted an additional 9 rounds of impact to a total of 49 impacts compared to G2 specimens.


2020 ◽  
pp. 096739112095509
Author(s):  
Mohd Suzeren Md Jamil ◽  
Noor Nabilah Muhamad ◽  
Wan Naqiuddin Wan Zulrushdi

The present work verified the capability of a solid state self-healing system for retarding or arresting fatigue cracks in epoxy materials subjected to cyclic loading at room temperature. A solid state self-healing material is demonstrated using a thermosetting epoxy polymer which was modified by incorporating a linear thermoplastic polydiglycidyl ether bisphenol-A (PDGEBA) as a healing agent. The stress-controlled constant amplitude (CA) tensile fatigue behavior at stress ratio, R = 0.1 and frequency 10 Hz for both the neat and the modified epoxy was investigated. Fatigue life and residual strength degradation were continuously monitored during the fatigue tests. The modified epoxy fatigue life was shown to be increased by ∼50% after healing periods. The fatigue-healing process was proven through the surface and cross-section resin morphology analyses using microscopy optic and scanning electron microscope (SEM). On the whole, the solid state self-healing system has proven to be very effective in obstructing fatigue crack propagation, effectively improved the self-healing polymeric material to achieve higher endurance limits.


Sign in / Sign up

Export Citation Format

Share Document