A Smart Polymer Composite for Repeatedly Self-Healing Impact Damage in Fiber Reinforced Polymer (FRP) Vessels

Author(s):  
Jones Nji ◽  
Guoqiang Li

This paper investigated the impact properties of a novel polymer composite material with a potential to repeatedly self-heal impact damage in FRP vessels. The composite was fabricated by first dispersing copolyster thermoplastic particles in a shape memory polymer (SMP) matrix, and then reinforcing the material with three-dimensional (3D) woven glass fibers. Specimens of the reinforced composite with dimensions of 152 mm × 101 mm × 12.7 mm were produced by machining and divided into two groups (G1 and G2). G1 specimens were subjected to several impact/healing test cycles with 42 J of impact energy. G2 specimens were subjected to repeated impact test cycles with no healing at the same energy level. A third group of specimens without thermoplastic particles (G3), with identical dimensions as G2 was also produced and tested in a similar manner as G2 to evaluate the effects of thermoplastic particles on impact resistance. G2 specimens were perforated at the 40th impact while G3 specimens were perforated at the 27th impact. G1 specimens lasted an additional 9 rounds of impact to a total of 49 impacts compared to G2 specimens.

2011 ◽  
Vol 18 (6) ◽  
pp. 789-805 ◽  
Author(s):  
Amir Shahdin ◽  
Joseph Morlier ◽  
Laurent Mezeix ◽  
Christophe Bouvet ◽  
Yves Gourinat

Impact resistance of different types of composite sandwich beams is evaluated by studying vibration response changes (natural frequency and damping ratio). This experimental works will help aerospace structural engineer in assess structural integrity using classification of impact resistance of various composite sandwich beams (entangled carbon and glass fibers, honeycomb and foam cores). Low velocity impacts are done below the barely visible impact damage (BVID) limit in order to detect damage by vibration testing that is hardly visible on the surface. Experimental tests are done using both burst random and sine dwell testing in order to have a better confidence level on the extracted modal parameters. Results show that the entangled sandwich beams have a better resistance against impact as compared to classical core materials.


2021 ◽  
pp. 002199832199432
Author(s):  
Yacine Ouroua ◽  
Said Abdi ◽  
Imene Bachirbey

Multifunctional composite materials are highly sought-after by the aerospace and aeronautical industry but their performance depends on their ability to sustain various forms of damages, in particular damages due to repeated impacts. In this work we studied the mechanical behavior of a layered glass-epoxy composite with copper inserts subjected to fatigue under repeated impacts with different energy levels. Damage evolution as a function of impact energy was carefully monitored in order to determine the effect of the copper inserts on mechanical characteristics of the multifunctional composite, such as endurance and life. Results of repeated impact tests show that electric current interruption in the copper inserts occurs prior to the total perforation of the composite material, and after about 75% of the total number of impacts to failure. This is the case for the three energy levels considered in this study, [Formula: see text] = 2, 3 and 4 Joules. The epoxy resin was dissolved chemically in order to preserve the mechanical structure of the damaged copper inserts and the composite fibers for further inspection and analysis. Scanning electron microscopy (SEM) of the fractured copper inserts revealed interesting information on the nature of the damage, including information on plastic deformation, strain hardening, cracking mode, temperature increase during the impacts, and most importantly the glass fibers and their roles during the impact-fatigue tests.


2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Norazean Shaari ◽  
Aidah Jumahat ◽  
M. Khafiz M. Razif

In this paper, the impact behavior of Kevlar/glass fiber hybrid composite laminates was investigated by performing the drop weight impact test (ASTM D7136). Composite laminates were fabricated using vacuum bagging process with an epoxy matrix reinforced with twill Kevlar woven fiber and plain glass woven fiber. Four different types of composite laminates with different ratios of Kevlar to glass fiber (0:100, 20:80, 50:50 and 100:0) were manufactured. The effect of Kevlar/glass fiber content on the impact damage behavior was studied at 43J nominal impact energy. Results indicated that hybridization of Kevlar fiber to glass fiber improved the load carrying capability, energy absorbed and damage degree of composite laminates with a slight reduction in deflection. These results were further supported through the damage pattern analysis, depth of penetration and X-ray evaluation tests. Based on literature work, studies that have been done to investigate the impact behaviour of woven Kevlar/glass fiber hybrid composite laminates are very limited. Therefore, this research concentrates on the effect of Kevlar on the impact resistance properties of woven glass fibre reinforced polymer composites.


2011 ◽  
Vol 66-68 ◽  
pp. 683-687 ◽  
Author(s):  
Li Zhang ◽  
Yan Jue Gong ◽  
Shuo Zhang

By designing the different formulations of the composites and adopting optimized technology including extrusion and molding, the effects of the Micro-capsules on the properties of nylon composites are analyzed by the impact property test. The mechanical impact property of the glass fiber reinforced nylon composites is influenced little if the content of the self-healing microcapsules added is less than 3.5%, and the technology of self-healing microcapsules used in the polymer composite gear is feasible.


Author(s):  
Meivazhisalai Parasuraman Salaimanimagudam ◽  
Covaty Ravi Suribabu ◽  
Gunasekaran Murali ◽  
Sallal R. Abid

Reducing the weight of concrete beams is a primary (beyond strength and durability) concern of engineers. Therefore, this research was directed to investigate the impact response of hammerhead pier concrete beams designed with density-based method topology optimization. The finite element topology optimization was conducted using Autodesk fusion 360 considering three different mesh sizes of 7 mm, 10 mm, and adaptive meshing. Three optimized hammerhead beam configurations; HB1, HB2, and HB3, respectively, with volume reductions greater than 50 %. In the experimental part of this research, nine beams were cast with identical size and configuration to the optimized beams. Three beams, identical to the optimized beams, were tested under static bending for verification purposes. In comparison, six more beams, as in the preceding three beams but without and with hooked end steel fibers, were tested under repeated impact load. The test results revealed that the highest flexural capacity and impact resistance at crack initiation and failure were recorded for the adaptive mesh beams (HB3 and HB3SF). The failure impact energy and ductility ratio of the beam HB3SF was higher than the beams HB1SF and HB2SF by more than 270 %. The results showed that the inclusion of steel fiber duplicated the optimized beam’s impact strength and ductility several times. The failure impact resistance of fibrous beams was higher than their corresponding plain beams by approximately 2300 to4460 %, while their impact ductility ratios were higher by 6.0 to 18.1 times.


2019 ◽  
Author(s):  
Anne Schmitz

Abstract The types of biomedical devices that can be three-dimensional printed (3DP) is limited by the mechanical properties of the resulting materials. As a result, much research has focused on adding carbon nanotubes (CNT) to these photocurable polymers to make them stronger. However, there is little to no data on how CNTs affect the impact resistance of these polymers, an important property when designing and manufacturing lower limb prosthetics. The objective of this study was to expand the use of 3DP to prosthetics by testing the hypothesis that adding CNTs to a stereolithographic (SLA) photocurable resin will result in a cured polymer with increased impact resistance. Twenty-six total specimens: 13 with nanotubes and 13 without nanotubes, were printed on a Form2 SLA printer. Once all the specimens were printed, washed, and cured, the impact resistance was quantified using a pendulum impact tester in a notched Izod configuration. Contrary to the hypothesis, the specimens with SWCNTs (0.312 ± 0.036 ft*lb/in) had a significantly lower impact resistance compared to the non-SWCNT specimens (0.364 ± 0.055 ft*lb/in), U = 34.0, p = 0.004. This decreased impact resistance may be due to voids in the printed polymer around the aggregated nanotubes. Thus, SLA polymers still do not have the impact strength needed to be used for a full lower limb prosthetic.


Author(s):  
I. V. Cheremukhina

The use of various physical influences is an economical and highly effective direction for regulating and improving the characteristics of the modified reinforced polymer composite materials developed in this work. The methods of energy effects studied in this work were used at the stage of impregnation of technical threads of various chemical nature with an oligomeric binder and a hardener (when preparing prepregs by the traditional method) or with a binder solution and a curing system (when preparing prepregs by the method of layered application of components) Based on the conducted research, a classification of the applied methods of physical modification according to the principle of the influence of energy fields is proposed. The studied methods of energy effects are divided into orienting and energetically energizing effects. The first group includes treatments with constant magnetic (PMP) or electric fields (PEP), and constant mechanical loads. The second group includes energy effects that have a wave nature (energetically energizing), and vibration, ultrasonic effects, and ultraviolet radiation are attributed to them. Modification methods of the first group contribute to a decrease in the mobility of binder molecules during curing, while the formation of branches of polymer chains occurs during the curing process, which leads to a predominant increase in the destructive stress during static bending. Energetically energizing effects contribute to the relative acceleration of the process of linear growth of polymer chains during curing, which is accompanied by the formation of a more sparsely cross-linked mesh structure, which leads to a predominant increase in impact strength. Of the two competing processes in the curing of epoxy oligomers, this one requires a higher activation energy, which is confirmed by the results of studies. Analyzing the results obtained, it can be concluded that the modification methods used in the work allow not only to obtain polymer composite materials with high strength characteristics, but also to directly adjust the properties of composites depending on the requirements for the products. Orienting modification methods lead to hardening of the resulting polymer composite material with a predominant increase in the destructive stress during static bending from 20 to 47%. When using energetically energizing influences in the technology of producing reinforced reactoplasts, the impact strength increases mainly from 19 to 40%.


Author(s):  
Prayers Roy ◽  
Shaker A. Meguid

Abstract In this paper, we examine the energy absorption and containment capabilities of a newly proposed dual-ring design accounting for interactions between a released blade and fully bladed fan disk using 3D finite element analysis. The components of this dual-ring design are strategically selected to ensure high energy absorption and high impact resistance, thus leading to reduced damage of the disk and increased safety. Three containment ring designs are examined: (i) conventional single-ring design composed of one of titanium, aluminum or Kevlar, (ii) a newly proposed aluminium-Kevlar dual-ring arrangement, and (iii) dual-ring arrangement with an interfacial gap between them to arrest and contain the released blade and ensure free passage of the trailing blades. The results of our numerical simulations indicate that although the single-ring design resists penetration and contains the released blade within the confines of the disk, it does not remove the released blade from the path of the trailing blades leading to severe damage to the fan disk. On the contrary, our new dual-ring design, which contains an interfacial gap, has potential to successfully arrest the released blade within the confines of the ring and out of the path of the trailing blades. This design significantly can reduce the impact damage to the fan disk and reduces kinetic energy of the released blade to near zero in less than half a rotation of the fan disk.


2019 ◽  
Vol 9 (3) ◽  
pp. 516 ◽  
Author(s):  
Sneha Samal ◽  
Marcela Kolinova ◽  
Hubert Rahier ◽  
Giovanni Dal Poggetto ◽  
Ignazio Blanco

The internal structure of fiber reinforced geopolymer composite was investigated by microfocus X-ray computed tomography (µCT) under mechanical impact. µCT is a non-destructive, multi approach technique for assessing the internal structures of the impacted composites without compromising their integrity. The three dimensional (3D) representation was used to assess the impact damage of geopolymer composites reinforced with carbon, E-glass, and basalt fibers. The 3D representations of the damaged area with the visualization of the fiber rupture slices are presented in this article. The fiber pulls out, and rupture and matrix damage, which could clearly be observed, was studied on the impacted composites by examining slices of the damaged area from the center of the damage towards the edge of the composite. Quantitative analysis of the damaged area revealed that carbon fabric reinforced composites were much less affected by the impact than the E-glass and basalt reinforced composites. The penetration was clearly observed for the basalt based composites, confirming µCT as a useful technique for examining the different failure mechanisms for geopolymer composites. The durability of the carbon fiber reinforced composite showed better residual strength in comparison with the E-glass fiber one.


Sign in / Sign up

Export Citation Format

Share Document