Structure of Shear Bands in Zirconium-Based Metallic Glasses Observed by Transmission Electron Microscopy

2002 ◽  
Vol 754 ◽  
Author(s):  
Xiaofeng Gu ◽  
Kenneth J. T. Livi ◽  
Todd C. Hufnagel

ABSTRACTWe have used transmission electron microscopy (TEM) to investigate the structure of shear bands produced by bending electron-transparent Zr52.5Cu17.9Ni14.6Al10Ti5 metallic glass specimens. Shear bands were located by comparing the structure of the specimens before and after deformation. The shear band spacing is influenced by the structure of the specimen; portions of the specimen with a significant population of nanocrystals show a smaller separation between shear bands. Quantitative high resolution TEM analysis based on ratio technique has been used to explore the defect structure in shear bands. High density and void-like defects with size of about 1 nm were found in shear bands formed in both amorphous and nanocrystalline areas. A simple model was proposed to explain the formation of these defects.

1987 ◽  
Vol 104 ◽  
Author(s):  
E. A. Fitzgerald ◽  
P. D. Kirchner ◽  
G. D. Petit ◽  
J. M. Woodall ◽  
D. G. Ast

ABSTRACTThe defect structure of lattice-mismatched one micron In0.12 Ga0.88As epilayers on (001) GaAs was studied with scanning cathodoluminescence (CL) and transmission electron microscopy (TEM). CL examination of the GaAs buffer layer revealed the formation of a segmented network of defects below the interface. Cross-sectional TEM analysis shows that these defects are dislocation half-loops extending from the interface, and the vast majority of these loops lie on the GaAs side of the interface. The dislocations in the GaAs buffer layer were determined to be edge dislocations. Thus, CL images show that edge dislocations in this system are centers for non-radiative recombination. We propose that two 60° dislocations with opposite screw and interface tilt components can glide into the buffer layer to form edge dislocations. Potential energy plots for 60° dislocations near the interface and interacting with interface dislocations supports this model.


2009 ◽  
Vol 283-286 ◽  
pp. 453-457
Author(s):  
Jung Hoon Yoo ◽  
Dae Hwang Yoo ◽  
Jung Hwa Seo ◽  
Ji Ling Dong ◽  
Young Sang Na ◽  
...  

In Zr-Cu-Ni-Al bulk metallic glasses where there are no dislocations, localized plastic deformation in shear bands occurs largely by the formation and migration of defects such as voids, micropores, shear bands and local variations in composition. Thus, the investigation on defects is critical for the understanding and improvement of plastic deformation in metallic glasses. In this study, microstructures and nano defects in the Zr-Cu-Ni-Al BMGs are characterized by variety of techniques, such as X-ray diffractometry, high resolution transmission electron microscopy, scanning transmission electron microscopy and electron holography.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
F. Wang ◽  
L. F. Zhang ◽  
P. Huang ◽  
J. Y. Xie ◽  
T. J. Lu ◽  
...  

Nanoscale Cu/Nb multilayers with individual layer thicknesses of 2, 5, and 15 nm were prepared by d.c. magnetron sputtering. The cross-sectional morphologies of the multilayers were examined under transmission electron microscopy (TEM) as well as high resolution TEM, whilst the flow stresses were measured with nanoindentation. A unique cross-sectional microstructure comprising well-modulated and mixed regions was observed, causing length-scale-independent flow stresses not found in existing studies, and shear bands were absent upon plastic deformation. Built upon this unique microstructure, possible mechanisms underlying the high plastic stability and length-scale-independent flow stresses of Cu/Nb multilayers were discussed in terms of amorphous-crystalline interface and its interaction with both mixed and well-modulated regions.


1989 ◽  
Vol 157 ◽  
Author(s):  
R.S. Bhattacharya ◽  
A.K. Rai ◽  
S.C. Kung ◽  
D. Patrizio

ABSTRACTDual ion implantations of Ti+ and C+ into sintered a-SiC and hot pressed SÌ3N4 have been studied by Rutherford backscattering spectroscopy (RBS) combined with plan/cross section view transmission electron microscopy (TEM). The samples were analyzed before and after annealing at 1200°C for 2 hours in a vacuum of 1x10-6 torr. The results were compared with single ion implantation of Ti+. RBS analysis showed that no oxidation occurred during annealing and Ti diffused toward the surface in both SiC and SigN^ Cross section TEM analysis revealed the formation of TiC precipitates in SiC due to both dual (Ti+ + C+) and single (Ti+) ion implantations. Precipitates were found to form in SÌ3N4 as well; however, because of very close proximity of observed d values with those of TiC, TiN and β-SiC, it was not possible to uniquely identify the chemical nature of these precipitates. Thermo-dynamic calculations were performed to explain the observed results.


Author(s):  
M. J. Carr ◽  
J. F. Shewbridge ◽  
T. O. Wilford

Strong solid state bonds are routinely produced between physical vapor deposited (PVD) silver coatings deposited on sputter cleaned surfaces of two dissimilar metal parts. The low temperature (200°C) and short time (10 min) used in the bonding cycle are advantageous from the standpoint of productivity and dimensional control. These conditions unfortunately produce no microstructural changes at or near the interface that are detectable by optical, SEM, or microprobe examination. Microstructural problems arising at these interfaces could therefore easily go undetected by these techniques. TEM analysis has not been previously applied to this problem because of the difficulty in specimen preparation. The purpose of this paper is to describe our technique for preparing specimens from solid state bonds and to present our initial observations of the microstructural details of such bonds.


Author(s):  
A.C. Daykin ◽  
C.J. Kiely ◽  
R.C. Pond ◽  
J.L. Batstone

When CoSi2 is grown onto a Si(111) surface it can form in two distinct orientations. A-type CoSi2 has the same orientation as the Si substrate and B-type is rotated by 180° degrees about the [111] surface normal.One method of producing epitaxial CoSi2 is to deposit Co at room temperature and anneal to 650°C.If greater than 10Å of Co is deposited then both A and B-type CoSi2 form via a number of intermediate silicides .The literature suggests that the co-existence of A and B-type CoSi2 is in some way linked to these intermediate silicides analogous to the NiSi2/Si(111) system. The phase which forms prior to complete CoSi2 formation is CoSi. This paper is a crystallographic analysis of the CoSi2/Si(l11) bicrystal using a theoretical method developed by Pond. Transmission electron microscopy (TEM) has been used to verify the theoretical predictions and to characterise the defect structure at the interface.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
Chin Kai Liu ◽  
Chi Jen. Chen ◽  
Jeh Yan.Chiou ◽  
David Su

Abstract Focused ion beam (FIB) has become a useful tool in the Integrated Circuit (IC) industry, It is playing an important role in Failure Analysis (FA), circuit repair and Transmission Electron Microscopy (TEM) specimen preparation. In particular, preparation of TEM samples using FIB has become popular within the last ten years [1]; the progress in this field is well documented. Given the usefulness of FIB, “Artifact” however is a very sensitive issue in TEM inspections. The ability to identify those artifacts in TEM analysis is an important as to understanding the significance of pictures In this paper, we will describe how to measure the damages introduced by FIB sample preparation and introduce a better way to prevent such kind of artifacts.


Sign in / Sign up

Export Citation Format

Share Document