Self-Assembly of Iron Nanoparticle Arrays

2002 ◽  
Vol 759 ◽  
Author(s):  
S. A. Majetich ◽  
D. F. Farrell

ABSTRACTSurfactant-coated spherical iron-based nanoparticles 3.0–9.5 nm in diameter were synthesized and dispersed in hexane. TEM images of dried particle assemblies were taken and analyzed to discover the structure of the assemblies, and to establish the relationship between particle concentration, surfactant type, and conditions of drying and array structure.

Author(s):  
MO Blunt ◽  
A. Stannard ◽  
E. Pauliac-Vaujour ◽  
CP Martin ◽  
Ioan Vancea ◽  
...  

This article reviews relatively recent forms of self-assembly and self-organization that have demonstrated particular potential for the assembly of nanostructured matter, namely biorecognition and solvent-mediated dynamics. It first considers the key features of self-assembled and self-organized nanoparticle arrays, focusing on the self-assembly of nanoparticle superlattices, the use of biorecognition for nanoparticle assembly, and self-organizing nanoparticles. It then describes the mechanisms and pathways for charge transport in nanoparticle assemblies, with particular emphasis on the relationship between the current–voltage characteristics and the topology of the lattice. It also discusses single-electron conduction in nanoparticle films as well as pattern formation and self-organization in dewetting nanofluids.


2021 ◽  
Author(s):  
Beatriz Matarranz ◽  
Goutam Ghosh ◽  
Ramesh Kandanelli ◽  
Angel Sampedro ◽  
Kalathil K. Kartha ◽  
...  

We unravel the relationship between conjugation length and self-assembly behaviour of oligophenyleneethynylenes (OPEs).


Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3310
Author(s):  
Shengda Liu ◽  
Jiayun Xu ◽  
Xiumei Li ◽  
Tengfei Yan ◽  
Shuangjiang Yu ◽  
...  

In the past few decades, enormous efforts have been made to synthesize covalent polymer nano/microstructured materials with specific morphologies, due to the relationship between their structures and functions. Up to now, the formation of most of these structures often requires either templates or preorganization in order to construct a specific structure before, and then the subsequent removal of previous templates to form a desired structure, on account of the lack of “self-error-correcting” properties of reversible interactions in polymers. The above processes are time-consuming and tedious. A template-free, self-assembled strategy as a “bottom-up” route to fabricate well-defined nano/microstructures remains a challenge. Herein, we introduce the recent progress in template-free, self-assembled nano/microstructures formed by covalent two-dimensional (2D) polymers, such as polymer capsules, polymer films, polymer tubes and polymer rings.


2021 ◽  
Vol 18 (180) ◽  
pp. 20210334
Author(s):  
Liane Gabora ◽  
Mike Steel

Natural selection successfully explains how organisms accumulate adaptive change despite that traits acquired over a lifetime are eliminated at the end of each generation. However, in some domains that exhibit cumulative, adaptive change—e.g. cultural evolution, and earliest life—acquired traits are retained; these domains do not face the problem that Darwin’s theory was designed to solve. Lack of transmission of acquired traits occurs when germ cells are protected from environmental change, due to a self-assembly code used in two distinct ways: (i) actively interpreted during development to generate a soma, and (ii) passively copied without interpretation during reproduction to generate germ cells. Early life and cultural evolution appear not to involve a self-assembly code used in these two ways. We suggest that cumulative, adaptive change in these domains is due to a lower-fidelity evolutionary process, and model it using reflexively autocatalytic and foodset-generated networks. We refer to this more primitive evolutionary process as self–other reorganization (SOR) because it involves internal self-organizing and self-maintaining processes within entities, as well as interaction between entities. SOR encompasses learning but in general operates across groups. We discuss the relationship between SOR and Lamarckism, and illustrate a special case of SOR without variation.


2009 ◽  
Vol 610-613 ◽  
pp. 585-590 ◽  
Author(s):  
Li Wang ◽  
Hong Fang Sun ◽  
Hui Hua Zhou ◽  
Jing Zhu

A film with a single-layer of size controlled silver nanocrystals embedded in silicon dioxide (SiO2) dielectric film by magnetic sputtering has been fabricated for nonvolatile memory applications. The effects of sputtering power, deposition time and substrate temperature on Ag nanocrystals formation were investigated. Transmission electron microscopy (TEM) images showed the as-prepared Ag nanocrystals had high uniformity in their size and distribution. The relationship between Ag nanocrystal size, density and electron storage capability as well as date retention time has been discussed.


Sign in / Sign up

Export Citation Format

Share Document