Enhanced Piezoelectric Properties of Piezoelectric Single Crystals by Domain Engineering

2003 ◽  
Vol 785 ◽  
Author(s):  
Satoshi Wada ◽  
Koichi Yako ◽  
Hirofumi Kakemoto ◽  
Takaaki Tsurumi

ABSTRACTFor tetragonal barium titanate (BaTiO3) single crystals, an electric field (E-field) applied along [111]c direction can induce an engineered domain configuration. In this study, the engineered domain structures with different domain sizes were induced into BaTiO3 single crystals, and their piezoelectric properties were investigated as a function of a domain size. Prior to this study, the dependence of domain configuration on the temperature and the E-field was investigated using a polarizing microscope in order to understand the optimum condition for fine and coarse domain structures. As a result, above Curie temperature (Tc) of 132.2 °C, when the E-field over 6 kV/cm was applied along [111]c direction, the engineered domain configuration with fine domain structure appeared. Moreover, it was also found that this fine domain structure was still stable at room temperature without E-field. On the other hand, the coarse domain structure was obtained by poling at just below Tc. Finally, the piezoelectric properties were measured using the 31 resonators with different kinds of domain sizes. As the result, it was found that the piezoelectric properties such as d31 and k31 increased significantly with decreasing domain sizes.

2006 ◽  
Vol 301 ◽  
pp. 23-26 ◽  
Author(s):  
Koichi Yako ◽  
Hirofumi Kakemoto ◽  
Takaaki Tsurumi ◽  
Satoshi Wada

Engineered domain configuration was induced into barium titanate (BaTiO3) single crystals, and the d33 piezoelectricity was investigated as a function of domain size. Prior to the domain engineering, the dependence of domain configuration on the temperature and the electric-field was investigated, and above Curie temperature (Tc), when the electric-field over 16 kV/cm was applied along [111]c direction, the fine engineered domain configuration appeared. On the basis of the above information, the 33 resonators with different domain sizes were successfully prepared. Their piezoelectric measurement revealed that the d33 of the 33 resonators with fine-engineered domain configurations were higher than those of BaTiO3 single-domain crystals. Moreover, d33 increased with decreasing domain sizes. The highest d33 of 289 pC/N was obtained in the BaTiO3 crystal with a domain size of 13μm.


2006 ◽  
Vol 320 ◽  
pp. 147-150
Author(s):  
Keisuke Yokoh ◽  
Song Min Nam ◽  
Hirofumi Kakemoto ◽  
Takaaki Tsurumi ◽  
Hirohiko Kumagai ◽  
...  

For potassium niobate (KNbO3) single crystal, the 31 resonators with the highest piezoelectric constant d31 were designed using transformation of axis. We confirmed that the engineered domain configurations with maximum d31 of –55.1 pC/N was caused by a combination between two polarization with polar directions along [101]c and [-101]c directions. Moreover, if there are larger piezoelectric constants from domain wall region, we can expect the much higher piezoelectric properties. To induce the above domain configuration, a new poling method using patterning electrode was investigated. In this study, the two methods on the basis of temperature-induced phase transition at 207 °C and electric-field-induced phase transition at room temperature were investigated.


RSC Advances ◽  
2016 ◽  
Vol 6 (54) ◽  
pp. 49060-49067 ◽  
Author(s):  
Micka Bah ◽  
Natalya Alyabyeva ◽  
Richard Retoux ◽  
Fabien Giovannelli ◽  
Mustapha Zaghrioui ◽  
...  

We reported self-organized and hierarchized domain structures on various length scales ranging from micrometer to nanometer scale in K0.5Na0.5NbO3 crystals.


2007 ◽  
Vol 350 ◽  
pp. 89-92
Author(s):  
Keisuke Yokoh ◽  
Tomomitsu Muraishi ◽  
Song Min Nam ◽  
Hirofumi Kakemoto ◽  
Takaaki Tsurumi ◽  
...  

To induce fine engineered domain configurations into potassium niobate (KNbO3) single crystals, two kinds of methods were performed, i.e., (1) high DC electric field exposure along the opposite direction of polarization of KNbO3 single-domain crystals at room temperature, and (2) introduction of randomly oriented fine domain configuration by heat treatment at 700 °C and then high DC electric field exposure along [001]c direction of KNbO3 multidomain crystals at room temperature. When the method (1) was performed, finally, the poled KNbO3 crystals became to single-domain state again through the formation of multidomain state. On the other hand, the KNbO3 multidomain crystals were obtained by using the method (2), and an enhancement of piezoelectric-related properties was observed.


2007 ◽  
Vol 561-565 ◽  
pp. 459-462
Author(s):  
Katsushi Tanaka ◽  
Hiromitsu Ide ◽  
Yoshinori Sumi ◽  
Kyosuke Kishida ◽  
Haruyuki Inui

Compressive deformation of L10-ordered single crystals of FePd whose c/a ratio less than unity have been investigated from room temperature to 823 K. The results show that the critical resolved shear stress (CRSS) for octahedral glide of ordinary dislocations is smaller than that of super-lattice dislocations in all the temperature range investigated, that is the opposite sense to the case of Ti-56 mol% Al. The CRSS for ordinary dislocations virtually independent to the temperature. On the other hand, the CRSS for super dislocations exhibits a weak positive temperature dependence from room temperature up to 573 K and decreases in higher temperatures.


2004 ◽  
Vol 842 ◽  
Author(s):  
Hiroyuki Y. Yasuda ◽  
Takashi Kase ◽  
Yukichi Umakoshi

ABSTRACTPseudoelasticity in Fe3Al single crystals doped with a small amount of Ga, Ge and Si was investigated focusing on the antiphase boundary (APB) energy and the ordered domain structure. Single crystals of Fe-23at%Al and Fe-21at%Al-2at%X (X=Ga, Ge, Si) were grown by a floating zone method. In Fe-23at%Al single crystals, superpartial dislocations with Burgers vector (b) of 1/4<111> moved dragging APB during loading, while APB pulled back the superpartials during unloading. This resulted in giant pseudoelasticity regardless of martensitic transformation and the recoverable strain was about 5%. Ga addition was found to be effective in increasing the recovery strain compared with Fe-23at%Al crystals. In contrast, both Ge and Si additions decreased the amount of shape recovery. Stress at which the shape recovery started, was increased by Ga, Ge and Si additions. This means the APB energy increased by the additions, since the surface tension of APB pulling back the superpartials increases with increasing the energy. On the other hand, the frictional stress of the superpartials with b=1/4<111> increased significantly by Ge or Si doping due to solid solution hardening, though the stress of Ga-doped crystals was almost the same as that of the binary crystals. Higher frictional stress of Ge- and Si-doped crystals made the reversible motion of the superpartials difficult, resulting in the small recovery ratio. Ordered domains with displacement vector (R) of 1/4<111> in Fe-23at%Al and Fe-Al-Ga alloys were observed to be small, less than 100nm. In contrast, Ge and Si additions increased the domain size to more than 500nm. Since the domain boundaries with R=1/4<111> played an important role in the individual motion of the superpartials with b=1/4<111>, the fine domain structure was found to be favorable for giant pseudoelasticity in Fe3Al single crystals. Ga addition increased the APB energy following the superpartials and kept the domain size small, resulting in the increase in recovery strain.


2019 ◽  
Vol 09 (03) ◽  
pp. 1950022 ◽  
Author(s):  
Zhi-Hao Zhao ◽  
Rui-Fang Ge ◽  
Yejing Dai

This paper investigates a system of 0.93[Formula: see text][Formula: see text]TiO3–0.06BaTiO3–0.01[Formula: see text][Formula: see text]NbO3–[Formula: see text]CuO (BNT–BT–KNN–[Formula: see text]CuO, [Formula: see text][Formula: see text]mol.%) ceramics, which were fabricated by the conventional solid-state process through the granulation of vacuum freeze drier. The results show that the CuO doping made a significant enhancement on the piezoelectric properties of the BNT–BT–KNN ceramics. With the doping of CuO, the transition temperature between ferroelectric phase and ergodic relaxor state is reduced to near room temperature, resulting in pinched [Formula: see text]–[Formula: see text] loops and “sprout” shape [Formula: see text]–[Formula: see text] curves. For the composition with [Formula: see text], a high unipolar strain of 0.39% under 5[Formula: see text]kV/mm contributes a large [Formula: see text][Formula: see text]pm/V at room temperature, which is competitive with the other BNT-based ceramics.


X-ray measurements recently carried out by the author on the lattice expansion of silver and quartz showed that the coefficients of thermal expansion, over the ranges investigated, are the same as those observed for the specimen as a whole using optical methods. Goetz and Hergenrother, on the other hand, from X-ray measurements on the coefficients of thermal expansion of single crystals of bismuth, claimed to have found a large difference between values obtained by the two methods of measurement. A possible explanatiion of this that their accuracy is not sufficient to establish definitely the deviation of the X-ray measurements from the optical expansion curve. The author has since made X-ray measurements on the expansion of the bismuth lattice from room temperature to just below the melting point, and finds no evidence of such a discrepancy as Goetz and Hergenrother record.


2004 ◽  
Vol 45 (2) ◽  
pp. 178-187 ◽  
Author(s):  
Satoshi Wada ◽  
Hirofumi Kakemoto ◽  
Takaaki Tsurumi

Sign in / Sign up

Export Citation Format

Share Document