Structural and dielectric proper ties of CaCu3Ti4O12 thin film. deposited using laser ablation.

2003 ◽  
Vol 785 ◽  
Author(s):  
V. Gupta ◽  
R.R. Das ◽  
A. Dixit ◽  
P. Bhattacharya ◽  
R.S. Katiyar

ABSTRACTCaCu3Ti4O12 (CCT) thin films were deposited on Pt/TiO2/SiO2/Si substrates using pulsed laser deposition technique. During the thin films deposition, the substrate temperature was varied in the range of 700–800 °C with a constant O2 pressure of 200 mTorr. X-ray diffraction showed the polycrystalline nature of the films. The dielectric properties of the films were studied in metal insulator configuration. Films grown at higher substrate temperature exhibited highest value of dielectric permittivity (∼2200). Micro Raman spectroscopy was used to study the vibrational modes of the CCT thin films in comparison with the bulk ceramics.

2003 ◽  
Vol 780 ◽  
Author(s):  
V. Craciun ◽  
D. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractZrC thin films were grown on Si substrates by the pulsed laser deposition (PLD) technique. X- ray photoelectron spectroscopy, x-ray diffraction and reflectivity, variable angle spectroscopic ellipsometry, and four point probe measurements were used to investigate the composition, density, thickness, surface morphology, optical and electrical properties of the grown structures. It has been found that crystalline films could be grown only by using fluences above 6 J/cm2 and substrate temperatures in excess of 500 °C. For a fluence of 10 J/cm2 and a substrate temperature of 700 °C, highly (100)-textured ZrC films exhibiting a cubic structure (a=0.469 nm) and a density of 6.7 g/cm3 were deposited. The use of a low-pressure atmosphere of C2H2 had a beneficial effect on crystallinity and stoichiometry of the films. All films contained high levels of oxygen contamination, especially in the surface region, because of the rather reactive nature of Zr atoms.


2010 ◽  
Vol 123-125 ◽  
pp. 375-378 ◽  
Author(s):  
Ram Prakash ◽  
Shalendra Kumar ◽  
Chan Gyu Lee ◽  
S.K. Sharma ◽  
Marcelo Knobel ◽  
...  

Ce1-xFexO2 (x=0, 0.01, 0.03 and 0.0 5) thin films were grown by pulsed laser deposition technique on Si and LaAlO3 (LAO) substrates. These films were deposited in vacuum and 200 mTorr oxygen partial pressure for both the substrates. These films were characterized by x-ray diffraction XRD and Raman spectroscopy measurements. XRD results reveal that these films are single phase. Raman results show F2g mode at ~466 cm-1 and defect peak at 489 cm-1 for film that deposited on LAO substrates, full width at half maximum (FWHM) is increasing with Fe doping for films deposited on both the substrates.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 533-535
Author(s):  
J. H. HAO ◽  
J. GAO

We have developed a process to grow SrTiO 3 ( STO ) thin films showing single (110) orientation directly on Si by means of pulsed laser deposition technique. The growth of STO films directly on Si has been described. The crystallinity of the grown STO films was characterized by X-ray diffraction analysis of θ-2θ scan and rocking curve. Our results may be of interest for better understanding of the growth based on the perovskite oxide thin films on silicon materials.


2010 ◽  
Vol 29-32 ◽  
pp. 1913-1918
Author(s):  
Xia Zhang ◽  
Hong Chen ◽  
Qiu Hui Liao ◽  
Xia Li

High-quality c-axis-oriented Ca3Co4O9+δ thin films have been grown directly on Si (100) wafers with inserting MgO buffer layers by pulsed-laser deposition (PLD). X-ray diffraction and scan electron microscopy show good crystallinity of the Ca3Co4O9+δ films. The resistivity and Seebeck coefficient of the Ca3Co4O9+δ thin films on Si (100) substrates are 9.8 mΩcm and 189 μV/K at the temperature of 500K, respectively, comparable to the single-crystal samples. This advance demonstrates the possibility of integrating the cobaltate-based high thermoelectric materials with the current state-of-the-art silicon technology for thermoelectricity-on-a-chip applications.


2011 ◽  
Vol 1292 ◽  
Author(s):  
Nobuyuki Iwata ◽  
Mark Huijben ◽  
Guus Rijnders ◽  
Hiroshi Yamamoto ◽  
Dave H. A. Blank

ABSTRACTThe CaFeOX(CFO) and LaFeO3(LFO) thin films as well as superlattices were fabricated on SrTiO3(100) substrates by pulsed laser deposition (PLD) method. The tetragonal LFO film grew with layer-by-layer growth mode until approximately 40 layers. In the case of CFO, initial three layers showed layer-by-layer growth, and afterward the growth mode was transferred to two layers-by-two layers (TLTL) growth mode. The RHEED oscillation was observed until the end of the growth, approximately 50nm. Orthorhombic twin CaFeO2.5 (CFO2.5) structure was obtained. However, it is expected that the initial three CFO layers are CaFeO3 (CFO3) with the valence of Fe4+. The CFO and LFO superlattice showed a step-terraces surface, and the superlattice satellite peaks in a 2θ-θ and reciprocal space mapping (RSM) x-ray diffraction (XRD) measurements, indicating that the clear interfaces were fabricated.


2011 ◽  
Vol 47 (4) ◽  
pp. 415-422 ◽  
Author(s):  
G. Balakrishnan ◽  
P. Kuppusami ◽  
S. Murugesan ◽  
E. Mohandas ◽  
D. Sastikumar

2016 ◽  
Vol vol1 (1) ◽  
Author(s):  
Billal Allouche ◽  
Yaovi Gagou ◽  
M. El Marssi

By pulsed laser deposition, lead potassium niobate Pb2KNb5O15 was grown on (001) oriented Gd3Ga5O12 substrate using a platinum buffer layer. The PKN thin films were characterized by X-Ray diffraction and Scanning Electron Microscopy (SEM). The dependence of their structural properties as a function of the deposition parameters was studied. It has been found that the out of plane orientation of PKN film depends on the oxygen pressure used during the growth. Indeed, PKN thin film is oriented [001] for low pressure and is oriented [530] for high pressure. For these two orientations, the crystalline quality of PKN film was determined using omega scans.


1995 ◽  
Vol 414 ◽  
Author(s):  
J. A. Conklin ◽  
C. M. Cotell ◽  
T. W. Barnett ◽  
D. C. Hansen

AbstractThin films of collagen were prepared by pulsed laser deposition (PLD) at room temperature on Si substrates using a KrF laser (248 nm) over a fluence range from 0.2–1.5 Jcm-2. The effects on film composition and morphology of ambient gas (Ar, Ar/H2O vapor), quenching atmosphere (Ar, Ar/H2O vapor), and fluence were examined. Fourier transform infrared spectroscopy (FT- IR) demonstrated that, independent of deposition parameter, the PLD films contained the characteristic Amide I and II functionalities of the collagen target and indicated that the secondary structure was altered by the PLD process. The surface morphology of the films was a function of the laser fluence and the gas environment during either film deposition or quenching at the end of deposition. Preliminary gel electrophoresis examination of deposited films suggested the collagen had not maintained the triple helical structure of the native collagen. X-Ray diffraction (XRD) indicated that all of the films, deposited under any conditions, were predominantly amorphous.


1999 ◽  
Vol 14 (6) ◽  
pp. 2355-2358 ◽  
Author(s):  
M. H. Corbett ◽  
G. Catalan ◽  
R. M. Bowman ◽  
J. M. Gregg

Pulsed laser deposition has been used to make two sets of lead magnesium niobate thin films grown on single-crystal h100j MgO substrates. One set was fabricated using a perovskite-rich target while the other used a pyrochlore-rich target. It was found that the growth conditions required to produce almost 100% perovskite Pb(Mg1/3Nb2/3)O3 (PMN) films were largely independent of target crystallography. Films were characterized crystallographically using x-ray diffraction and plan view transmission electron microscopy, chemically using energy dispersive x-ray analysis, and electrically by fabricating a planar thin film capacitor structure and monitoring capacitance as a function of temperature. All characterization techniques indicated that perovskite PMN thin films had been successfully fabricated.


Sign in / Sign up

Export Citation Format

Share Document