In-situ Observation of Silicon Epitaxy Breakdown with Real-Time Spectroscopic Ellipsometry

2004 ◽  
Vol 808 ◽  
Author(s):  
Charles W. Teplin ◽  
Dean H. Levi ◽  
Qi Wang ◽  
Eugene Iwaniczko ◽  
Kim M. Jones ◽  
...  

ABSTRACTWe use in-situ real-time spectroscopic ellipsometry to observe the breakdown of silicon epitaxy during growth by hot-wire chemical vapor deposition (HWCVD) on Si (100) substrates. Representative data is presented for the two types of epitaxy breakdown that we have observed: 1) an immediate transition to hydrogenated amorphous silicon (a-Si:H), and 2) a slower transition where a-Si:H cones nucleate and grow until they eclipse further epitaxial growth. Simple models, consistent with transmission-electron and atomic-force micrographs, describe the evolution of both types of breakdown showing that real-time spectroscopic ellipsometry is a useful tool for monitoring the growth of epitaxial silicon.

2008 ◽  
Vol 1142 ◽  
Author(s):  
Hideto Yoshida ◽  
Seiji Takeda ◽  
Tetsuya Uchiyama ◽  
Hideo Kohno ◽  
Yoshikazu Homma

ABSTRACTNucleation and growth processes of carbon nanotubes (CNTs) in iron catalyzed chemical vapor deposition (CVD) have been observed by means of in-situ environmental transmission electron microscopy. Our atomic scale observations demonstrate that solid state iron carbide (Fe3C) nanoparticles act as catalyst for the CVD growth of CNTs. Iron carbide nanoparticles are structurally fluctuated in CVD condition. Growth of CNTs can be simply explained by bulk diffusion of carbon atoms since nanoparticles are carbide.


2004 ◽  
Vol 808 ◽  
Author(s):  
D.H. Levi ◽  
C.W. Teplin ◽  
E. Iwaniczko ◽  
R.K. Ahrenkiel ◽  
H.M. Branz ◽  
...  

ABSTRACTWe have applied real-time spectroscopic ellipsometry (RTSE) as both an in-situ diagnostic and post-growth analysis tool for hydrogenated amorphous silicon (a-Si:H)/crystalline silicon (c-Si) heterojunction with intrinsic thin-layer (HIT) solar cells grown by hot-wire chemical vapor deposition. RTSE enables precise thickness control of the 5 to 25 nm layers used in these devices, as well as monitoring crystallinity and surface roughness in real time. Utilizing RTSE feedback, but without extensive optimization, we have achieved a photovoltaic energy conversion efficiency of 14.1% on an Al-backed p-type Czochralski c-Si wafer coated with thin i and n layers on the front. Open-circuit voltages above 620 mV indicate effective passivation of the c-Si surface by the a-Si:H intrinsic layer. Lifetime measurements using resonant coupled photoconductive decay indicate that surface recombination velocities can approach 1 cm/s. RTSE and transmission electron microscopy show that the intrinsic a-Si:H i-layers grow as a mixture of amorphous and nano-crystalline silicon.


RSC Advances ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 70-75 ◽  
Author(s):  
Kaori Takano ◽  
Takashi Nyu ◽  
Tatsuhiro Maekawa ◽  
Takashi Seki ◽  
Ryuichi Nakatani ◽  
...  

Real-time and in situ observation technique was proposed for ultra high molecular weight block copolymer thin films under solvent vapor annealing.


Sign in / Sign up

Export Citation Format

Share Document