Influence of He implantation conditions on strain relaxation and threading dislocation density in Si0.8Ge0.2 virtual substrates

2004 ◽  
Vol 809 ◽  
Author(s):  
J. Cai ◽  
P. M. Mooney ◽  
S. H. Christiansen ◽  
H. Chen ◽  
J. O. Chu ◽  
...  

ABSTRACTThe strain relaxation and threading dislocation density of He-implanted and annealed SiGe/Si heterostructures have been studied. For He doses above a threshold of 8×1015 cm−2, the degree of strain relaxation depends primarily on the SiGe layer thickness; a similar degree of strain relaxation is obtained when the He dose and energy are varied over a relatively wide range. In contrast, the threading dislocation density is strongly influenced by the implantation depth. There is a strong correlation between the parameter He(SiGe), the He dose in the SiGe layer calculated from He profiles simulated using the program Stopping and Range of Ions in Matter (SRIM), and the threading dislocation density. We find that to achieve a low threading dislocation density, <5×107 cm−2, He(SiGe) must be less than 1015 cm−2. The strain relaxation mechanism is also discussed.

2019 ◽  
Vol 9 (9) ◽  
pp. 1772
Author(s):  
Gu ◽  
Zhao ◽  
Ye ◽  
Deng ◽  
Lu

Single-crystalline Si1−xGex thin films on Si (100) with low threading dislocation density (TDD) are highly desired for semiconductor industrials. It is challenging to suppress the TDD since there is a large mismatch (4.2%) between Ge and Si—it typically needs 106–107/cm2 TDD for strain relaxation, which could, however, cause device leakage under high voltage. Here, we grew Si1−xGex (x = 0.5–1) films on Si (001) by low temperature molecular beam epitaxy (LT-MBE) at 200 °C, which is much lower than the typical temperature of 450–600 °C. Encouragingly, the Si1−xGex thin films grown by LT-MBE have shown a dramatically reduced TDD down to the 103–104/cm2 level. Using transmission electron microscopy (TEM) with atomic resolution, we discovered a non-typical strain relaxation mechanism for epitaxial films grown by LT-MBE. There are multiple-layered structures being introduced along out-of-plane-direction during film growth, effectively relaxing the large strain through local shearing and subsequently leading to an order of magnitude lower TDD. We presented a model for the non-typical strain relaxation mechanism for Si1−xGex films grown on Si (001) by LT-MBE.


2004 ◽  
Vol 95 (10) ◽  
pp. 5347-5351 ◽  
Author(s):  
J. Cai ◽  
P. M. Mooney ◽  
S. H. Christiansen ◽  
H. Chen ◽  
J. O. Chu ◽  
...  

1989 ◽  
Vol 145 ◽  
Author(s):  
P.N. Uppal ◽  
J.S. Ahearn ◽  
R. Herring

AbstractThe density and arrangement of dislocations in In0.15Ga0.85As grown on GaAs(100)) were determined by transmission electron microscopy as a function of misorientation toward (111)A, (111)B, and (110). Strained layer superlattices were used in all cases to reduce dislocation density. Layers grown on exact GaAs(100) exhibited a non-uniform threading dislocation dis- tribution whereby some areas had a high density (∼ 109cm-2or higher) of dislocation tangles and other areas that we in between had a more uniform density (∼ 2 x 107cm-2). The misorientated layers exhibited a uniform threading dislocation distribution with densities of ∼ 5 x 106 cm-2 for (100) misoriented towards (111)A, ∼ 1 x 107cm-2towards (111)B, and ∼ 3 x 107cm-2 towards (110). The misfit dislocation network (dislocations located at the GaAs-InO0.15Ga0.85 As interface) formed orthogonal dislocation arrays in the case of exact (100) substrates and slightly non-ortho- gonal arrays in the case of misoriented substrates. These results are explained with the help of a general glide model of strain relaxation in which the exact (100) orientation has eight equally stressed glide systems which presumably activate during strain relaxation. With misoriented substrates the stress symmetry is broken and fewer glide systems experience the maximum stress, thus reducing the number of active dislocation systems. A small asymmetry in interfacial dis- location density was observed in all the cases where the linear dislocation density along the two (011) and (011) orthogonal directions differed by about 20%. This is explained by the preferred activation of (x-dislocations (high dislocation mobility) over 13-dislocations (low dislocation mobility).


2007 ◽  
Vol 994 ◽  
Author(s):  
Mahfoudh Raïssi ◽  
Gabrielle Regula ◽  
Chokri Hadj Belgacem ◽  
Cyril Coudreau ◽  
Serge Nitsche ◽  
...  

AbstractTo weight the importance of a nanocavity buffer in a SiGe deposition substrate, some P type (001) FZ Si wafers are implanted (A samples) or not (B samples) at room temperature with 5×1016 He+ cm–2 at 10keV. They are annealed at 700°C for one hour to form a nanocavity layer close to the Si surface. Then, the wafers are carefully chemically cleaned in a clean room to remove both organic and metallic impurities from the surface. They are coated either by 210 nm (A) or 430 nm (B) Si1−xGex (x=0.20±0.02) alloy grown at 575°C for 0.42 hour by low pressure chemical vapor deposition (LP-CVD) with a growth rate of 8 to 17 nm.mn−1. Both kinds of samples are studied by cross section transmission electron microscopy, X-rays diffraction, Rutherford backscattering, atomic force microscopy and etch pit counts. The association of these techniques demonstrates that the thin SiGe layer which is deposited on sample A is fully relaxed and that the threading dislocation density (estimated to hardly reach 4×103cm−2) is at least one order of magnitude lower than what is obtained so far using ion implantation assistance in SiGe layer growth on Silicon. The roughness of the SiGe surface is low enough to stand a further Si epitaxy. Nevertheless, the mechanism involved responsible for the threading dislocation annihilation and/or confinement is still unclear.


1991 ◽  
Vol 239 ◽  
Author(s):  
Véronique T. Gillard ◽  
David B. Noble ◽  
William D. Nix

ABSTRACTUnderstanding die kinetics and mechanisms of strain relaxation in Si-Ge heteroepitaxial films is pertinent to several device applications. In this paper we present a method for determining the evolution of the mobile dislocation density with time during the course of strain relaxation taking place in an isothermal annealing experiment.Wafer curvature measurements using a laser scanning technique are used to determine the elastic strain after growth in films of variable thickness and to follow the strain relaxation during isothermal annealing experiments. By coupling the strain relaxation measurements with previous TEM measurements of dislocation velocities in this system, the mobile threading dislocation density and its evolution with time are determined.


2001 ◽  
Vol 79 (21) ◽  
pp. 3398-3400 ◽  
Author(s):  
Akira Sakai ◽  
Ken Sugimoto ◽  
Takeo Yamamoto ◽  
Masahisa Okada ◽  
Hiroya Ikeda ◽  
...  

1994 ◽  
Vol 356 ◽  
Author(s):  
Veronique T Gillard ◽  
William D Nix

AbstractIn situ substrate curvature measurements obtained during isothermal annealing of Si1-xGex films grown on (001) Si substrates allow determination of the evolution of strain versus time in these films. By coupling the strain relaxation measurements with previous measurements of dislocation velocities in this system, the mobile threading dislocation density and its evolution in the course of strain relaxation can be determined. The results indicate that in the late stage of strain relaxation, the mobile threading dislocation density decreases significantly. Results obtained with samples of two different sizes show that this decrease in mobile dislocation density is not primarily associated with dislocations running out at the edges of the film but with dislocation interactions impeding their further motion. Furthermore, for films thinner than 500 nm the residual strains after annealing are significantly higher than the values predicted by the equilibrium theory of misfit dislocations. The measured residual strains are compared with predictions based on Freund’s treatment of the blocking of a moving threading segment by an orthogonal misfit dislocation in its path. We find that the blocking criterion gives a very good account of the residual strain in Si1-xGex films and that blocking of threading dislocations by other misfit dislocations appears to play an important role in the late stage of strain relaxation.


Sign in / Sign up

Export Citation Format

Share Document