Nanocavity Buffer Induced by Gas Ion Implantation in Silicon Substrate for Strain Relaxation of Heteroepitaxial Si1-xGex/Si Thin Layers

2007 ◽  
Vol 994 ◽  
Author(s):  
Mahfoudh Raïssi ◽  
Gabrielle Regula ◽  
Chokri Hadj Belgacem ◽  
Cyril Coudreau ◽  
Serge Nitsche ◽  
...  

AbstractTo weight the importance of a nanocavity buffer in a SiGe deposition substrate, some P type (001) FZ Si wafers are implanted (A samples) or not (B samples) at room temperature with 5×1016 He+ cm–2 at 10keV. They are annealed at 700°C for one hour to form a nanocavity layer close to the Si surface. Then, the wafers are carefully chemically cleaned in a clean room to remove both organic and metallic impurities from the surface. They are coated either by 210 nm (A) or 430 nm (B) Si1−xGex (x=0.20±0.02) alloy grown at 575°C for 0.42 hour by low pressure chemical vapor deposition (LP-CVD) with a growth rate of 8 to 17 nm.mn−1. Both kinds of samples are studied by cross section transmission electron microscopy, X-rays diffraction, Rutherford backscattering, atomic force microscopy and etch pit counts. The association of these techniques demonstrates that the thin SiGe layer which is deposited on sample A is fully relaxed and that the threading dislocation density (estimated to hardly reach 4×103cm−2) is at least one order of magnitude lower than what is obtained so far using ion implantation assistance in SiGe layer growth on Silicon. The roughness of the SiGe surface is low enough to stand a further Si epitaxy. Nevertheless, the mechanism involved responsible for the threading dislocation annihilation and/or confinement is still unclear.

2004 ◽  
Vol 809 ◽  
Author(s):  
D. Buca ◽  
M.J. Mörschbächer ◽  
B. Holländer ◽  
M. Luysberg ◽  
R. Loo ◽  
...  

ABSTRACTStrain relaxed Si1−xGex layers are attractive virtual substrates for the epitaxial growth of strained Si. Tensile strained Si has attracted a lot of attention due its superior electronic properties. In this study, the strain relaxation of pseudomorphic Si1−xGex layers grown by chemical vapor deposition (CVD) on Si(100) substrates was investigated after He+ ion implantation and thermal annealing. The implantation induced defects underneath the SiGe/Si interface promote strain relaxation during annealing via preferred nucleation of dislocation loops which form misfit dislocations at the interface to the substrate. The amount of strain relaxation as well as the final threading dislocation density depend on the implantation dose and energy. Si1−xGex layers with thicknesses between 75 and 420 nm and Ge concentrations between 19 and 29 at% were investigated. The strain relaxation strongly depends on the layer thickness. Typically the structures show ≈70 % strain relaxation and threading dislocation densities in the low 106 cm−2 range. AFM investigations proved excellent surface morphology with an rms roughness of 0.6 nm. The samples were investigated by Rutherford backscattering spectrometry, ion channeling, transmission electron microscopy and atomic force microscopy.


2004 ◽  
Vol 809 ◽  
Author(s):  
J. Cai ◽  
P. M. Mooney ◽  
S. H. Christiansen ◽  
H. Chen ◽  
J. O. Chu ◽  
...  

ABSTRACTThe strain relaxation and threading dislocation density of He-implanted and annealed SiGe/Si heterostructures have been studied. For He doses above a threshold of 8×1015 cm−2, the degree of strain relaxation depends primarily on the SiGe layer thickness; a similar degree of strain relaxation is obtained when the He dose and energy are varied over a relatively wide range. In contrast, the threading dislocation density is strongly influenced by the implantation depth. There is a strong correlation between the parameter He(SiGe), the He dose in the SiGe layer calculated from He profiles simulated using the program Stopping and Range of Ions in Matter (SRIM), and the threading dislocation density. We find that to achieve a low threading dislocation density, <5×107 cm−2, He(SiGe) must be less than 1015 cm−2. The strain relaxation mechanism is also discussed.


2006 ◽  
Vol 916 ◽  
Author(s):  
Kazuhiro Ito ◽  
Yu Uchida ◽  
Sang-jin Lee ◽  
Susumu Tsukimoto ◽  
Yuhei Ikemoto ◽  
...  

AbstractAbout 20 years ago, the discovery of an AlN buffer layer lead to the breakthrough in epitaxial growth of GaN layers with mirror-like surface, using a metal organic chemical vapor deposition (MOCVD) technique on sapphire substrates. Since then, extensive efforts have been continued to develop a conductive buffer layer/substrate for MOCVD-grown GaN layers to improve light emission of GaN light-emitting diodes. In the present study, we produced MOCVD-grown, continuous, flat epitaxial GaN layers on nitrogen enriched TiN buffer layers with the upper limit of the nitrogen content of TiN deposited at room temperature (RT) on sapphire substrates. It was concluded that the nitrogen enrichment would reduce significantly the TiN/GaN interfacial energy. The RT deposition of the TiN buffer layers suppresses their grain growth during the nitrogen enrichment and the grain size refining must increase nucleation site of GaN. In addition, threading dislocation density in the GaN layers grown on TiN was much lower than that in the GaN layers grown on AlN.


2003 ◽  
Vol 798 ◽  
Author(s):  
H. Kang ◽  
Z. C. Feng ◽  
I. Ferguson ◽  
S. P. Guo ◽  
M. Pophristic

ABSTRACTThe addition of indium, even to small concentrations, to AlGaN has resulted in improved optical and doping properties for these materials. This paper is the first report of improved structural properties for indium containing AlGaN layers. A systematic series of the AlGaN layers with nominal concentration of 20% aluminum were grown by metal-organic chemical vapor deposition with traces amounts of indium incorporated into the layers (up to 0.15% indium). X-ray diffraction analysis of the layers was completed using Williamson Hall plots and reciprocal space mapping to investigate any change in the columnar structure of the initial AlGaN layers. It was found that the threading dislocation densities and lateral coherence length showed a systematic variation with indium incorporation. The threading dislocation density is lowered as indium composition increased with a corresponding increase in lateral coherence length. This indicates that even the incorporation of trace amounts of indium improves the structural properties of these epilayers.


1987 ◽  
Vol 91 ◽  
Author(s):  
S. M. Vernon ◽  
S. J. Pearton ◽  
J. M. Gibson ◽  
R. Caruso ◽  
C. R. Abernathy ◽  
...  

ABSTRACTGaAs layers were grown directly on misoriented (2° off (100)→[011]) Si substrates by Metalorganic Chemical Vapor Deposition. The threading dislocation density at the surface of 4 μm thick layers was typically 108cm−2, as determined by both preferential etching and transmission electron microscopy. Rapid thermal annealing (900°C, 10s) improved the crystalline quality of the GaAs near the heterointerface while allowing no detectable Si diffusion into this layer. Two deep electron traps were observed in the undoped GaAs, but were present at a low concentration (∼ 1013 cm−3 ). The (400) x-ray diffraction peak width from the GaAs was significantly reduced with increasing GaAs layer thickness, indicating improved material quality. This is supported by Si implant activation data, which shows higher net donor activity in thicker layers.


2006 ◽  
Vol 955 ◽  
Author(s):  
Serguei A Chevtchenko ◽  
J. Xie ◽  
Y. Fu ◽  
X. Ni ◽  
H. Morkoç

ABSTRACTThe dependence of traps and their concentration in GaN on the quality of templates, on which the layers are grown, has been studied by deep-level transient spectroscopy (DLTS). Thin GaN layers studied were grown on GaN templates employing conventional epitaxial lateral overgrowth (ELO) and nano-ELO with SiNx nanonetwork. The concentrations of traps found in these layers were compared with a reference sample grown on a standard GaN template not utilizing ELO. Two traps A (0.55 eV – 0.58 eV) and B (0.20 eV – 0.23 eV) were detected in the temperature range from 80 K to 400 K. A reduction of traps in layers grown on the ELO and nano-ELO templates was noted. We attribute this reduction to the reduction of threading dislocation density and as a result reduced capture of point defects and complexes as part of dislocation core structure and/or reduced formation of defects and complexes in the vicinity of line defects where the formation can be energetically favorable.


2006 ◽  
Vol 527-529 ◽  
pp. 1505-1508
Author(s):  
Ümit Özgür ◽  
Y. Fu ◽  
Cole W. Litton ◽  
Y.T. Moon ◽  
F. Yun ◽  
...  

Improved structural quality and radiative efficiency were observed in GaN thin films grown by metalorganic chemical vapor deposition on in situ-formed SiN and TiN porous network templates. The room temperature carrier decay time of 1.86 ns measured for a TiN network sample is slightly longer than that for a 200 μm-thick high quality freestanding GaN (1.73 ns). The linewidth of the asymmetric X-Ray diffraction (XRD) (1012) peak decreases considerably with the use of SiN and TiN layers, indicating the reduction in threading dislocation density. However, no direct correlation is yet found between the decay times and the XRD linewidths, suggesting that point defect and impurity related nonradiative centers are the main parameters affecting the lifetime.


2001 ◽  
Vol 673 ◽  
Author(s):  
E.M. Rehder ◽  
T.S. Kuan ◽  
T.F. Kuech

ABSTRACTWe have made an extensive study of Si0.82Ge0.18 film relaxation on silicon on insulator (SOI) substrates having a top Si layer 40, 70, 330nm, and 10[.proportional]m thick. SiGe films were deposited with a thickness up to 1.2[.proportional]m in an ultrahigh vacuum chemical vapor deposition system at 630°C. Following growth, films were characterized by X-ray diffraction and a dislocation revealing etch. The same level of relaxation is reached for each thickness of SiGe film independent of the substrate structure. Accompanying the film relaxation is the development of a tetragonal tensile strain in the thin Si layer of the SOI substrates. This strain reached 0.22% for the 1.2[.proportional]m film on the 40nm SOI and decreases with SOI thickness. The Si thickness of the SOI substrate also effected the threading dislocation density. For 85% relaxed films the density fell from 7×106 pits/cm2 on bulk Si to 103pits/cm2 for the 40, 70, and 330nm SOI substrates. The buried amorphous layer of the SOI substrate alters the dislocation dynamics by allowing dislocation core spreading or dislocation dissociation. The reduced strain field of these dislocations reduces dislocation interactions and the pinning that results. Without the dislocation pinning, the misfit dislocations can extend longer distances yielding a greatly reduced threading dislocation density.


1995 ◽  
Vol 379 ◽  
Author(s):  
H. Zogg ◽  
P. Müller ◽  
A. Fach ◽  
J. John ◽  
C. Paglino ◽  
...  

ABSTRACTThe strain induced by the thermal mismatch in Pbl−xSnxSe and other IV–VI compound layers on Si(111)-substrates relaxes by glide of dislocations in the main <110> {001}-glide system. The glide planes are arranged with 3-fold symmetry and inclined to the (111)-surface. Despite a high threading dislocation density (> 107 cm−2) in these heavily lattice mismatched structures, the misfit dislocations move easily even at cryogenic temperatures and after many temperature cycles between RT and 77K. The cumulative plastic deformation after these cycles is up to 500%! Despite a pronounced deformation hardening occurs, the structural quality of the layer is only slightly adversely affected as regards additional threading dislocations created. The interaction probability between these dislocations is estimated to be about 10−5.


Author(s):  
Kuan-Ting Liu ◽  
Shoou-Jinn Chang ◽  
Sean Wu

GaN ultraviolet photodetector with metal-semiconductor-metal structure is achieved by growing on a periodic trapezoid column-shape patterned sapphire substrate using metalorganic chemical vapor deposition. Under 5-V reverse bias, the photodetector fabricated on such patterned sapphire substrate exhibits a lower dark current, a higher photocurrent, and a 476 % enhancement in the maximum responsivity as compare with those of the photodetector fabricated on conventional flat sapphire substrate. It is also found that the much larger UV-to-visible rejection ratio and the fact that responsivity drops in a smaller cut-off region are observed from photodetector fabricated by using a periodic trapezoid column-shape patterned sapphire substrate. These phenomena may all be attributed to the reduction of threading dislocation density and the improved quality of GaN film, as well as the internal reflection and/or scattering effect on the interface between GaN film and the periodic trapezoid column-shape pattern of the substrate.


Sign in / Sign up

Export Citation Format

Share Document