Electrospun Poly(vinylidene fluoride)-based Carbon Nanofibers for Hydrogen Storage

2004 ◽  
Vol 837 ◽  
Author(s):  
H. J. Chung ◽  
D. W. Lee ◽  
S. M. Jo ◽  
D. Y. Kim ◽  
W. S. Lee

ABSTRACTPoly(vinylidene fluoride) (PVdF) fine fiber of 200–300 nm in diameter was prepared through the electrospinning process. Dehydrofluorination of PVdF-based fibers for making infusible fiber was carried out using DBU, and the infusible PVdF-based nanofibers were then carbonized at 900–1800°C. The structural properties and morphologies of the resulting carbon nanofibers were investigated using XRD, Raman IR, SEM, TEM, and surface area & pore analysis. The PVdF-based carbon nanofibers had rough surfaces composed of 20-to 30-nm granular carbons, indicating their high surface area in the range of 400–970 m2/g. They showed amorphous structures. In the case of the highly ehydrofluorinated PVdF fiber, the resulting carbon fiber had a smoother surface, with d002 = 0.34–0.36 nm, and a very low surface area of 16–33 m2/g. The hydrogen storage capacities of the above carbon nano-fibers were measured, using the gravimetric method, by magnetic suspension balance (MSB), at room temperature and at 100 bars. The storage data were obtained after the buoyancy correction. The PVdF-based microporous carbon nanofibers showed a hydrogen storage capacity of 0.04–0.4 wt%. The hydrogen storage capacity depended on the dehydrofluorination of the PVdF nanofiber precursor, and on the carbonization temperatures.

Author(s):  
L. Scott Blankenship

Correction for ‘Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity’ by L. Scott Blankenship et al., Energy Environ. Sci., 2017, 10, 2552–2562, DOI: 10.1039/C7EE02616A.


2017 ◽  
Vol 10 (12) ◽  
pp. 2552-2562 ◽  
Author(s):  
Troy Scott Blankenship ◽  
Robert Mokaya

Cigarette butt derived carbons are highly porous (4310 m2 g−1 and 2.09 cm3 g−1) with record levels of hydrogen storage.


2012 ◽  
Vol 445 ◽  
pp. 571-576 ◽  
Author(s):  
Dervis E. Demirocak ◽  
Sarada Kuravi ◽  
Manoj K. Ram ◽  
Chand K. Jotshi ◽  
Sesha Srinivasan ◽  
...  

One of the biggest challenges for the commercial application of existing hydrogen storage materials is to meet the desired high volumetric and gravimetric hydrogen storage capacity and the ability to refuel quickly and repetitively as a safe transportation system at moderate temperature and pressure. In this work, we have synthesized polyaniline nanocomposites (PANI-NC) and hypercrosslinked polyaniline (PANI-HYP) materials to provide structure and composition which could meet the specific demands of a practical hydrogen storage system. Hydrogen sorption measurements showed that high surface area porous structure enhanced the storage capacity significantly at 77.3K and 1atm (i.e., 0.8wt% for PANI-HYP). However at 298K, storage capacity of all samples is less than 0.5wt% at 70 bar. Hydrogen sorption results along with the surface area measurements confirmed that hydrogen storage mechanism predominantly based on physisorption for polyaniline.


2004 ◽  
Vol 837 ◽  
Author(s):  
S. H. Park ◽  
B. C. Kim ◽  
S. M. Jo ◽  
D. Y. Kim ◽  
W. S. Lee

ABSTRACTElectrospun PAN nanofibers were carbonized with or without iron(III) acetylacetonate to induce catalytic graphitization within the range of 900–1500°C, resulting in ultrafine carbon fibers with the diameter of about 90–300 nm. The structural properties and morphologies of the resulting carbon nanofibers were investigated using XRD, Raman IR, SEM, TEM, and surface area/pore analysis. The PAN-based carbon nanofibers carbonized without a catalyst had amorphous structures, with d002 = 0.37 nm, and smooth surfaces with very low surface areas of 22–31 m2/g. The carbonization of PAN-based nanofibers in the presence of the catalyst produced the graphite nanofibers (GNF) with d002 = 0.341 nm, indicating turbostrate structures. The graphite structures were grown by increasing the catalyst contents and the carbonization temperature. The hydrogen storage capacities of the aforementioned carbon nanofiber materials were evaluated through the gravimetric method using Magnetic Suspension Balance (MSB) at room temperature and at 100 bars. The storage data were obtained after the buoyancy correction. The CNFs showed hydrogen storage capacities of 0.16–0.50 wt.%, increasing with the increase of carbonization temperature, but that of the CNF at 1500°C was lowest. The hydrogen storage capacities of the GNFs with low surface areas of 100–250m2/g were 0.14–1.01 wt%.


2005 ◽  
Vol 109 (31) ◽  
pp. 14979-14989 ◽  
Author(s):  
Matthias Rzepka ◽  
Erich Bauer ◽  
Gudrun Reichenauer ◽  
Thomas Schliermann ◽  
Babette Bernhardt ◽  
...  

2011 ◽  
Vol 12 (3) ◽  
pp. 171-176 ◽  
Author(s):  
Byong-Chol Bai ◽  
Jong-Gu Kim ◽  
Mehraj-Ud-Din Naik ◽  
Ji-Sun Im ◽  
Young-Seak Lee

2018 ◽  
Vol 18 (4) ◽  
pp. 5-16 ◽  
Author(s):  
E. E. Doğan ◽  
P. Tokcan ◽  
B. K. Kizilduman

AbstractActivated carbons and carbon nanotube were synthesized with chemical and microwave processes of olive leaf in media with and without ultrasonic waves, and chemical vapor deposition method, respectively. The samples were characterized by x-ray diffraction, calorimetry, Brunauer, Emmett and Teller method, scanning electron microscopy/energy-dispersive X-ray, and zetasizer nano S90 instruments. The activated carbon synthesized in the ultrasonic bath had a higher surface area. The hydrogen adsorption capacity of carbon structures including activated carbons and carbon nanotube was measured as a function of pressure at 77 K. The hydrogen storage capacity of the carbon nanotube is 300% and 265% higher than the hydrogen storage capacity of activated carbons synthesized in medium without and with ultrasonic waves, respectively. Results showed the correlation between hydrogen storage capacity and specific surface area. The highest H2 storage value was obtained with carbon nanotube at 77 K. As a result, activated carbon and carbon nanotube can be used in hydrogen storage and therefore, the olive leaf can be converted into a high added value product in the energy field.


Sign in / Sign up

Export Citation Format

Share Document