Graphite nanofibers prepared from catalytic graphitization of electrospun poly(vinylidene fluoride) nanofibers and their hydrogen storage capacity

2007 ◽  
Vol 120 (3-4) ◽  
pp. 413-419 ◽  
Author(s):  
Sung Eun Hong ◽  
Dong-Kyu Kim ◽  
Seong Mu Jo ◽  
Dong Young Kim ◽  
Byung Doo Chin ◽  
...  
2004 ◽  
Vol 837 ◽  
Author(s):  
H. J. Chung ◽  
D. W. Lee ◽  
S. M. Jo ◽  
D. Y. Kim ◽  
W. S. Lee

ABSTRACTPoly(vinylidene fluoride) (PVdF) fine fiber of 200–300 nm in diameter was prepared through the electrospinning process. Dehydrofluorination of PVdF-based fibers for making infusible fiber was carried out using DBU, and the infusible PVdF-based nanofibers were then carbonized at 900–1800°C. The structural properties and morphologies of the resulting carbon nanofibers were investigated using XRD, Raman IR, SEM, TEM, and surface area & pore analysis. The PVdF-based carbon nanofibers had rough surfaces composed of 20-to 30-nm granular carbons, indicating their high surface area in the range of 400–970 m2/g. They showed amorphous structures. In the case of the highly ehydrofluorinated PVdF fiber, the resulting carbon fiber had a smoother surface, with d002 = 0.34–0.36 nm, and a very low surface area of 16–33 m2/g. The hydrogen storage capacities of the above carbon nano-fibers were measured, using the gravimetric method, by magnetic suspension balance (MSB), at room temperature and at 100 bars. The storage data were obtained after the buoyancy correction. The PVdF-based microporous carbon nanofibers showed a hydrogen storage capacity of 0.04–0.4 wt%. The hydrogen storage capacity depended on the dehydrofluorination of the PVdF nanofiber precursor, and on the carbonization temperatures.


2020 ◽  
pp. 116348
Author(s):  
Julien Mouli-Castillo ◽  
Niklas Heinemann ◽  
Katriona Edlmann

Author(s):  
L. Scott Blankenship

Correction for ‘Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity’ by L. Scott Blankenship et al., Energy Environ. Sci., 2017, 10, 2552–2562, DOI: 10.1039/C7EE02616A.


Author(s):  
Kuo-Wei Huang ◽  
Sudipta Chatterjee ◽  
Indranil Dutta ◽  
Yanwei Lum ◽  
Zhiping Lai

Formic acid has been proposed as a hydrogen energy carrier because of its many desirable properties, such as low toxicity and flammability, and a high volumetric hydrogen storage capacity of...


2017 ◽  
Vol 725 ◽  
pp. 916-922 ◽  
Author(s):  
K. Saksl ◽  
J. Ďurišin ◽  
D. Balga ◽  
O. Milkovič ◽  
T. Brestovič ◽  
...  

2009 ◽  
Vol 24 (9) ◽  
pp. 2880-2885 ◽  
Author(s):  
Jing Zhang ◽  
Wei Yan ◽  
Chenguang Bai ◽  
Fusheng Pan

Mg-Li-Al alloy was prepared by ingot casting and then underwent subsequent reactive ball milling. A Mg-Li-Al-H complex hydride was obtained under a 0.4 MPa hydrogen atmosphere at room temperature, and as high as 10.7 wt% hydrogen storage capacity was achieved, with the peak desorption temperature of the initial step at approximately 65 °C. The evolution of the reaction during milling, as well as the effect of Li/Al ratio in the raw materials on the desorption properties of the hydrides formed, were studied by x-ray diffraction and simultaneous thermogravimetry and differential scanning calorimetry techniques. The results showed that mechanical milling increases the solubility of Li in Mg, leading to the transformation of bcc β(Li) solid solution to hcp α(Mg) solid solution, the latter continues to incorporate Li and Al, which stimulates the formation of Mg-Li-Al-H hydride. A lower Li/Al ratio resulted in faster hydrogen desorption rate and a greater amount of hydrogen released at a low temperature range, but sacrificing total hydrogen storage capacity.


2007 ◽  
Vol 26-28 ◽  
pp. 831-834 ◽  
Author(s):  
Lei Xie ◽  
Xiao Qi Li

The electrode(Ni-MWNTs) containing nickel(Ni) and multi-walled carbon nanotubes (MWNTs) was prepared by composite electrodeposit. Electrochemical hydrogen storage of the electrode was studied. The result showed a high electrochemical discharging capacity of up to 1361.1mA·h·g-1, which corresponds to a hydrogen storage capacity of 4.77Wt%(weight percent). Test of cyclic lifespan showed MWNTs had certain cyclic lifespan. Cyclic voltammetry tests showed that MWNTs can store hydrogen in chemical form.


2015 ◽  
Vol 40 (37) ◽  
pp. 12705-12712 ◽  
Author(s):  
Nicholas M. Musyoka ◽  
Jianwei Ren ◽  
Henrietta W. Langmi ◽  
Brian C. North ◽  
Mkhulu Mathe

Sign in / Sign up

Export Citation Format

Share Document