scholarly journals Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity

2017 ◽  
Vol 10 (12) ◽  
pp. 2552-2562 ◽  
Author(s):  
Troy Scott Blankenship ◽  
Robert Mokaya

Cigarette butt derived carbons are highly porous (4310 m2 g−1 and 2.09 cm3 g−1) with record levels of hydrogen storage.

Author(s):  
L. Scott Blankenship

Correction for ‘Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity’ by L. Scott Blankenship et al., Energy Environ. Sci., 2017, 10, 2552–2562, DOI: 10.1039/C7EE02616A.


2012 ◽  
Vol 445 ◽  
pp. 571-576 ◽  
Author(s):  
Dervis E. Demirocak ◽  
Sarada Kuravi ◽  
Manoj K. Ram ◽  
Chand K. Jotshi ◽  
Sesha Srinivasan ◽  
...  

One of the biggest challenges for the commercial application of existing hydrogen storage materials is to meet the desired high volumetric and gravimetric hydrogen storage capacity and the ability to refuel quickly and repetitively as a safe transportation system at moderate temperature and pressure. In this work, we have synthesized polyaniline nanocomposites (PANI-NC) and hypercrosslinked polyaniline (PANI-HYP) materials to provide structure and composition which could meet the specific demands of a practical hydrogen storage system. Hydrogen sorption measurements showed that high surface area porous structure enhanced the storage capacity significantly at 77.3K and 1atm (i.e., 0.8wt% for PANI-HYP). However at 298K, storage capacity of all samples is less than 0.5wt% at 70 bar. Hydrogen sorption results along with the surface area measurements confirmed that hydrogen storage mechanism predominantly based on physisorption for polyaniline.


2004 ◽  
Vol 837 ◽  
Author(s):  
H. J. Chung ◽  
D. W. Lee ◽  
S. M. Jo ◽  
D. Y. Kim ◽  
W. S. Lee

ABSTRACTPoly(vinylidene fluoride) (PVdF) fine fiber of 200–300 nm in diameter was prepared through the electrospinning process. Dehydrofluorination of PVdF-based fibers for making infusible fiber was carried out using DBU, and the infusible PVdF-based nanofibers were then carbonized at 900–1800°C. The structural properties and morphologies of the resulting carbon nanofibers were investigated using XRD, Raman IR, SEM, TEM, and surface area & pore analysis. The PVdF-based carbon nanofibers had rough surfaces composed of 20-to 30-nm granular carbons, indicating their high surface area in the range of 400–970 m2/g. They showed amorphous structures. In the case of the highly ehydrofluorinated PVdF fiber, the resulting carbon fiber had a smoother surface, with d002 = 0.34–0.36 nm, and a very low surface area of 16–33 m2/g. The hydrogen storage capacities of the above carbon nano-fibers were measured, using the gravimetric method, by magnetic suspension balance (MSB), at room temperature and at 100 bars. The storage data were obtained after the buoyancy correction. The PVdF-based microporous carbon nanofibers showed a hydrogen storage capacity of 0.04–0.4 wt%. The hydrogen storage capacity depended on the dehydrofluorination of the PVdF nanofiber precursor, and on the carbonization temperatures.


2013 ◽  
Vol 66 (5) ◽  
pp. 548 ◽  
Author(s):  
Lufeng Yang ◽  
Chunlin Xie ◽  
Chaofan Hu ◽  
Mingtao Zheng ◽  
Haibo Wang ◽  
...  

A type of activated carbon that is further chemically activated to obtain a high surface area (~3322 m2 g–1) (hsAC), is loaded with nickel nanoparticles by a direct hydrothermal method, and tested for hydrogen storage. The chemical composition, crystal structure, and microstructure of hsAC with or without Ni loading are characterised in addition to the nitrogen absorbance isotherms. Hydrogen storage studies showed that metal doping has no effect on the cryogenic storage, and the maximum room temperature (RT) storage capacity through spillover on the Ni-doped hsAC materials achieved 0.79 wt-% at 30 Pa with enhancement factors of 2.93. The smaller catalyst size was a critical factor that determined the enhancement of RT storage capacity of the materials. The Ni catalyst size was controlled by the doped Ni content. Tuning the Ni catalyst size together with an optimum carbon spillover receptor should play an effective role in further enhancement by the spillover effect.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Wan Nor Roslam Wan Isahak ◽  
Mohamed Wahab Mahamed Hisham ◽  
Mohd Ambar Yarmo

Porous carbon obtained by dehydrating agent, concentrated sulfuric acid (H2SO4), from biomass containing high cellulose (filter paper (FP), bamboo waste, and empty fruit bunches (EFB)) shows very high surface area and better thermal behavior. At room temperature (without heating), treatment of H2SO4removed all the water molecules in the biomass and left the porous carbon without emitting any gaseous byproducts. Brunauer-Emmett-Teller (BET) surface analysis has shown that bamboo-based carbon has good properties with higher surface area (507.8 m2/g), micropore area (393.3 m2/g), and better thermal behavior (compared to FP and EFB) without any activation or treatment process. By acid treatment of biomass, it was shown that higher carbon composition obtained from FP (85.30%), bamboo (77.72%), and EFB (76.55%) is compared to carbon from carbonization process. Under optimal sulfuric acid (20 wt.%) uses, high carbon yield has been achieved for FP (47.85 wt.%), bamboo (62.4 wt.%), and EFB (55.4 wt.%).


2019 ◽  
Vol 14 ◽  
pp. 155892501882490 ◽  
Author(s):  
Fatma Yalcinkaya

The importance of the nanofiber webs increases rapidly due to their highly porous structure, narrow pore size, and distribution; specific surface area and compatibility with inorganics. Electrospinning has been introduced as one of the most efficient technique for the fabrication of polymeric nanofibers due to its ability to fabricate nanostructures with unique properties such as a high surface area and porosity. The process and the operating parameters affect the nanofiber fabrication and the application of nanofibers in various fields, such as sensors, tissue engineering, wound dressing, protective clothes, filtration, desalination, and distillation. In this review, a comprehensive study is presented on the parameters of electrospinning system including applications. More emphasis is given to the application of nanofibers in membrane distillation (MD). The research developments and the current situation of the nanofiber webs in MD are also discussed.


2013 ◽  
Vol 24 (15) ◽  
pp. 155603 ◽  
Author(s):  
Jie Li ◽  
Jing Lin ◽  
Xuewen Xu ◽  
Xinghua Zhang ◽  
Yanming Xue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document