A New Approach Using Artificial Substrates for Growth of High-Quality Precipitate-Free HTS Thin Films, Toward Electronic Device Applications

2005 ◽  
Vol 868 ◽  
Author(s):  
K. Endo ◽  
P. Badica ◽  
H. Sato ◽  
H. Akoh

AbstractHigh quality thin films of HTS have been grown by MOCVD on substrates with artificial steps of predefined height and width. The surface of the films grown on the steps having width equal to the ‘double of the migration length' of the atomic species depositing on the substrate is totally free of precipitates: precipitates are gathered at the step edges where the free energy is lowest. The method has several advantages: it is simple, universal (it is independent of the materials, substrates, deposition technique or application) and allows control of precipitates segregates so that the quality and growth conditions of the films are the same as for the films grown on conventional substrates. The method is expected to result in new opportunities for the device fabrication, design and performance. As an example we present successful fabrication of a mesa structure showing intrinsic Josephson effect. We have used thin films of Bi-2212/Bi-2223 superstructure grown on (001) SrTiO3 single crystal substrates with artificial steps of 20 μm.

MRS Advances ◽  
2020 ◽  
Vol 5 (52-53) ◽  
pp. 2727-2735
Author(s):  
Nidhi ◽  
Tashi Nautiyal ◽  
Samaresh Das

AbstractSeveral techniques have been employed for large-scale synthesis of group 10 transition metal dichalcogenides (TMDCs) based on platinum and palladium for nano- and opto-electronic device applications. Nickel Sulphides (NixSy), belonging to group 10 TMDC family, have been widely explored in the field of energy storage devices such as batteries and supercapacitors, etc. and commonly synthesized through the solution process or hydrothermal methods. However, the high-quality thin film growth of NixSy for nanoelectronic applications remains a central challenge. Here, we report the chemical vapor deposition (CVD) growth of NiS2 thin film onto a two-inch SiO2/Si substrate, for the first time. Techniques such as X-ray photoelectron spectroscopy, X-ray Diffraction, Raman Spectroscopy, Scanning Electron Microscopy, have been used to analyse the quality of this CVD grown NiS2 thin film. A high-quality crystalline thin film of thickness up to a few nanometres (~28 nm) of NiS2 has been analysed here. We also fabricated a field-effect device based on NiS2 thin film using interdigitated electrodes by optical lithography. The electrical performance of the fabricated device is characterized at room temperature. On applying the drain voltage from -2 to +2 V, the device shows drain current in the range of 10-9 A before annealing and in the range of 10-6 A after annealing. This, being comparable to that from devices based on MoS2 and other two-dimensional materials, projects CVD grown NiS2 as a good alternative material for nanoelectronic devices.


Author(s):  
Takuya Mori ◽  
Satoshi Shibasaki ◽  
Hideki Aoyama

Various approaches for generating woodgrain patterns using computer graphics have been proposed so far. However, it is difficult to reproduce real woodgrain patterns using such conventional methods. In this paper, a new approach for generating woodgrain patterns is proposed. Virtual trees are generated by simulating tree growth in consideration of environmental conditions. Moreover, fine tree tissues and reflection properties at the wood surface are modeled. By applying these modeled factors, more diverse and accurate woodgrain patterns can be generated. With this approach, various types of virtual trees can be obtained by changing growth conditions such as period and location of growth or form of tissue in trees without the need to reset complicated parameters of each tree species. After this, the virtual trees can be cut at arbitrary areas, thus allowing a variety of woodgrain patterns to be generated by easy parameter setup.


1994 ◽  
Vol 235-240 ◽  
pp. 717-718 ◽  
Author(s):  
Peter C. Michael ◽  
L.-G. Johansson ◽  
L. Bengtsson ◽  
T. Claeson ◽  
Z.G. Ivanov ◽  
...  

2020 ◽  
Vol 58 (2) ◽  
pp. 145-150
Author(s):  
Tae Wan Park ◽  
Woon Ik Park

The nanofabrication of modern electronic devices requires advanced nanopatterning technologies. To fabricate desirable nanodevices with excellent device performance, controlling the shape and dimension of the pattern is very important. However, to achieve more facile and faster device fabrication, with better pattern resolution, pattern-tunability, process simplicity, and cost-effectiveness, some remaining challenges still need to be resolved. In this study, we introduce a simple and practical method to generate various patterns using a nanotransfer printing (nTP) process. To obtain functional materials with diverse shapes on a polymer replica pattern, in the nTP process we controlled the angle of deposition before transfer-printing. First, we obtained three different pattern shapes with a thickness of ~ 30 nm on polymethyl methacrylate (PMMA) replica patterns. Then, the deposited functional patterns on the PMMA patterns are successfully transfer-printed onto SiO<sub>2</sub>/Si substrates, showing line, L-shape line, and concavo-convex patterns. We observed the pattern shapes of the patterns by scanning electron microscope (SEM) and optical microscope. Moreover, we systemically analyzed how to form patterns of various shapes using one kind of master mold. We expect that this simple approach will be widely used to fabricate various useful patterns for electronic device applications.


2020 ◽  
Vol 31 (24) ◽  
pp. 22151-22161
Author(s):  
O. I. Olusola ◽  
M. L. Madugu ◽  
A. A. Ojo ◽  
I. M. Dharmadasa

Sign in / Sign up

Export Citation Format

Share Document