A New Dislocation-Dynamics Model and Its Application in Thin Film-Substrate Systems

2005 ◽  
Vol 875 ◽  
Author(s):  
E.H. Tan ◽  
L.Z. Sun

AbstractBased on the physical background, a new dislocation dynamics model fully incorporating the interaction among differential dislocation segments is developed to simulate 3D dislocation motion in crystals. As the numerical simulation results demonstrate, this new model completely solves the long-standing problem that simulation results are heavily dependent on dislocation-segment lengths in the classical dislocation dynamics theory. The proposed model is applied to simulate the effect of dislocations on the mechanical performance of thin films. The interactions among the dislocation loops, free surface and interfaces are rigorously computed by a decomposition method. This framework can be used to simulate how a surface loop evolves into two threading dislocations and to determine the critical thickness of thin films. Furthermore, the relationship between the film thickness and yield strength is established and compared with the conventional Hall-Petch relation.

Materials ◽  
2005 ◽  
Author(s):  
E. H. Tan ◽  
L. Z. Sun

A novel dislocation dynamics framework is developed to simulate dislocation evolutions in thin film heterostructures at nanoscale. It is based on 3-D dislocation motion together with its physical background by adding the solid viscous effect. As the numerical simulation results demonstrate, this new model completely solves a long-standing paradoxical phenomenon with which the simulation results were dependent on dislocation-segment lengths in the classical discrete dislocation dynamics theory. The proposed model is applied to simulate the effect of dislocations on the mechanical performance of thin films. The interactions among the dislocation loop, free surface and interface are rigorously computed by decomposing this complicated problem into two relatively simple sub-problems. This model is allowed to determine the critical thickness of thin films for a surface loop to nucleate and to simulate how a surface loop evolves into two threading dislocations. Furthermore, the relationship between the film thickness and yield strength is constructed and compared with the conventional Hall-Petch relation.


1993 ◽  
Vol 318 ◽  
Author(s):  
D. Lubben ◽  
F. A. Modine

ABSTRACTThe ionic conductivity of LiI thin films grown on sapphire(0001) substrates has been studied in situ during deposition as a function of film thickness and deposition conditions. LiI films were produced at room temperature by sublimation in an ultra-high-vacuum system. The conductivity of the Lil parallel to the film/substrate interface was determined from frequency-dependent impedance measurements as a function of film thickness using Au interdigital electrodes deposited on the sapphire surface. The measurements show a conduction of ∼5 times the bulk value at the interface which gradually decreases as the film thickness is increased beyond 100 nm. This interfacial enhancement is not stable but anneals out with a characteristic log of time dependence. Fully annealed films have an activation energy for conduction (σT) of ∼0.47 ± .03 eV, consistent with bulk measurements. The observed annealing behavior can be fit with a model based on dislocation motion which implies that the increase in conduction near the interface is not due to the formation of a space-charge layer as previously reported but to defects generated during the growth process. This explanation is consistent with the behavior exhibited by CaF2 films grown under similar conditions.


2016 ◽  
Vol 725 ◽  
pp. 189-194
Author(s):  
Ying Ying Cai ◽  
Jia Pei Guo ◽  
Yi Ping Chen

At the microscopic scale fast neutron irradiation brings about a high density of small point defect clusters in the form of dislocation loops and voids. And such radiation damage is of primary importance for materials used in nuclear energy production. In the present investigation emphasis is placed on the understanding of the mechanisms involved in the evolution of prismatic dislocation loops by glide in the presence of external free surfaces and those of the voids and in the interaction between dislocation loops and voids within irradiated thin films, so as to simulate in situ Transmission Electron Microscopy (TEM) images of dislocations, which is an indispensable tool for extracting information on radiation damage. By employing 3D dislocation dynamics based on isotropic elacticity and principle of superposition, the calculation results show that the image force is determined by the distance of the dislocation loop from the external and void surfaces and scales with the film thickness; the dislocation glide force is determined by the image stress as well as the loop–loop interaction stress which is in turn governed by the loop spacing. It is also shown that the presence of voids in the thin films has a strong influence on the behaviours of prismatic dislocations.


1999 ◽  
Vol 578 ◽  
Author(s):  
C. Lemarchand ◽  
B. Devincre ◽  
L.P. Kubin ◽  
J.L. Chaboche

The plasticity of thin films and layers is of considerable technological interest. For instance, the relaxation of internal stresses in semiconducting epitaxial layers has been the object of many studies [1, 2]. This relaxation is usually treated via the concept of critical thickness, the latter being defined as the maximum layer thickness below which dislocations cannot spontaneously move and relax the internal stresses. The various internal stresses present in epitaxial layers (e.g. the misfit and elastic incompatibility stresses at the film/substrate interface and the image force in a free-standing film) can be computed within a continuum frame. However, the way they influence the motion of a dislocation has not yet been computed, even in a approximate manner. An useful approximation that allows treating the boundary condition at the surface of a free-standing film consists of making use of the concept of image dislocation. Then, the critical stress for moving a dislocation in a free-standing film is the same as that of a capped layer of thickness twice that of the film. To date, models and dislocation dynamics (DD) simulations are available that involve several levels of approximation for the treatment of the dislocation/interface and dislocation/surface interactions [3–7]. For reasons that are not clearly understood, however, these models predict critical thicknesses that are systematically larger than the expected ones. The comparison with experiment is, in addition, made difficult because stresses have to be artificially introduced to replace the internal stresses and approximations have to be done to treat the image stresses. In the present work it is shown that it is now possible to fully account for the contribution of the various sources of internal stresses to the critical stress for the motion of a threading dislocation. This is performed numerically with the help of a hybrid code that combines a DD code for the treatment of the dislocation dynamics and a Finite Element (FE) code for the treatment of the boundary conditions. In what follows, several applications of this discrete-continuum model (DCM) to the study of dislocation motion in epitaxial layers are presented. The motion of a dislocation in a thin film is considered, including the image force and successively adding a misfit stress and an elastic incompatibility stress at the film/substrate interface.


2004 ◽  
Vol 261-263 ◽  
pp. 735-740
Author(s):  
Sukky Jun ◽  
Young Min Lee ◽  
Sung Youb Kim ◽  
Se Young Im

Molecular dynamics simulation of nanoindentation on Al(111) surface is presented. The simulation is performed using the Ercolessi-Adams glue potential and the Berendsen thermostat. Boundary conditions of 'pseudo' thin film are imposed in order to focus on the dislocation motion in ultra-thin film. Nucleation and development of defects underneath the indenter tip are visualized, and the gliding patterns of dislocation loops are investigated with particular emphasis on the effect of film thickness. Simulation results show that the early emission of dislocation loop is highly dependent on the film thickness.


2003 ◽  
Vol 779 ◽  
Author(s):  
Lucia Nicola ◽  
Erik Van der Giessen ◽  
Alan Needleman

AbstractThermal stress evolution in polycrystalline thin films is analyzed using discrete dislocation plasticity. Stress develops in the film during cooling from a stress-free configuration due to the difference in thermal expansion coefficient between the film and its substrate. A plane strain formulation with only edge dislocations is used and each grain of the polycrystal has a specified set of slip systems. The film–substrate interface and the grain boundaries are impenetrable for the dislocations. Results are presented for two film thicknesses, with higher hardening seen for the thinner films.


2002 ◽  
Vol 124 (3) ◽  
pp. 342-351 ◽  
Author(s):  
Tariq A. Khraishi ◽  
Hussein M. Zbib

Recent advances in 3-D dislocation dynamics include the proper treatment of free surfaces in the simulations. Dislocation interaction and slip is treated as a boundary-value problem for which a zero-traction condition is enforced at the external surfaces of the simulation box. Here, a new rigorous method is presented to handle such a treatment. The method is semi-analytical/numerical in nature in which we enforce a zero traction condition at select collocation points on a surface. The accuracy can be improved by increasing the number of collocation points. In this method, the image stress-field of a subsurface dislocation segment near a free surface is obtained by an image segment and by a distribution of prismatic rectangular dislocation loops padding the surface. The loop centers are chosen to be the collocation points of the problem. The image segment, with proper selection of its Burgers vector components, annuls the undesired shear stresses on the surface. The distributed loops annul the undesired normal stress component at the collocation points, and in the process create no undesirable shear stresses. The method derives from crack theory and falls under “generalized image stress analysis” whereby a distribution of dislocation geometries or entities (in this case closed rectangular loops), and not just simple mirror images, are used to satisfy the problem’s boundary conditions (BCs). Such BCs can, in a very general treatment, concern either stress traction or displacements.


1990 ◽  
Vol 188 ◽  
Author(s):  
W. D. Nix ◽  
D. B. Noble ◽  
J. F. Turlo

ABSTRACTThe mechanisms and kinetics of forming misfit dislocations in heteroepitaxial films are studied. The critical thickness for misfit dislocation formation can be found by considering the incremental extension of a misfit dislocation by the movement of a “threading” dislocation segment that extends from the film/substrate interface to the free surface of the film. This same mechanism allows one to examine the kinetics of dislocation motion and to illuminate the importance of dislocation nucleation and multiplication in strain relaxation. The effects of unstrained epitaxial capping layers on these processes are also considered. The major effects of such capping layers are to inhibit dislocation nucleation and multiplication. The effect of the capping layer on the velocity of the “threading” dislocation is shown to be small by comparison.A new substrate curvature technique for measuring the strain and studying the kinetics of strain relaxation in heteroepitaxial films is also briefly described.


2003 ◽  
Vol 795 ◽  
Author(s):  
E. H. Tan ◽  
L. Z. Sun

ABSTRACTA discrete dislocation dynamics model is developed to establish the equations of motion for three-dimensional interacting dislocation loops in the semiconductor thin film – substrate system. The film is assumed to be an elastic layer and is perfectly bonded with another elastic substrate. Dislocation loops are discretized into segments, each of which is represented by a parametric space curve of specific shape functions and associated degree of freedom. The dislocation stress field is calculated as an essential ingredient in the dislocation dynamics method. Dislocation dynamics and interaction with film surface/interface are simulated.


2001 ◽  
Vol 673 ◽  
Author(s):  
G. Dehm ◽  
B.J. Inkson ◽  
T.J. Balk ◽  
T. Wagner ◽  
E. Arzt

ABSTRACTIn-situ transmission electron microscopy studies of metal thin films on substrates indicate that dislocation motion is influenced by the structure of the film/substrate interface. For Cu films grown on silicon substrates coated with an amorphous SiNx diffusion barrier, the transmission electron microscopy studies reveal that dislocations are pulled towards the interface, where their contrast finally disappears. However, in epitaxial Al films deposited on single-crystalline α- Al2O3 substrates, threading dislocations advance through the layer and deposit dislocation segments adjacent to the interface. In this latter case, the interface is between two crystalline lattices. Stresses in epitaxial Al films and polycrystalline Cu films were determined by substrate- curvature measurements. It was found that, unlike the polycrystalline Cu films, the flow stresses in the epitaxial Al films are in agreement with a dislocation-based model.


Sign in / Sign up

Export Citation Format

Share Document