Effects of Silicon:Carbon P+ Layer Interfaces on Solar Cells

1987 ◽  
Vol 95 ◽  
Author(s):  
F. R. Jeffrey ◽  
G. D. Vernstrom ◽  
M. F. Weber ◽  
J. R. Gilbert

AbstractResults are presented showing the effects on amorphous silicon (a-Si) photovoltaic performance of the interfaces associated with a silicon carbide (a-Si:C) p+ layer. Carbon grading into the intrinsic layer from the p+ layer increases open circuit voltage (Voc) from O.7V to 0.88V. This effect is very similar to the boron profile effect reported earlier and supports the contention that Voc is being limited by an electron current at the p-i interface. The interface between the p+ a-Si:C layer and the transparent conductive oxide (TCO) is shown to be a potential source of high series resistance, with an abrupt interface showing the most serious problem. The effect is explained by electron injection from the TCO into the p+ layer being inhibited as a result of band mismatch.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
J. Márquez Marín ◽  
G. Torres Delgado ◽  
M. A. Aguilar Frutis ◽  
R. Castanedo Pérez ◽  
O. Zelaya Ángel

An Au/Cu2Te/CdTe/CdS/TCO/glass heterostructure based superstrate solar cells with 2.5 mm2of area, where the CdTe layer was prepared by means of closed spaced sublimation (CSS) and the CdS by chemical bath, reached an efficiencyηvalue of 12.1%. As transparent conductive oxide (TCO), a thin film of cadmium-indium oxide (CdIn2O4:CIO), obtained by sol-gel technique, was used. A systematic optimization of the thermal activation of the CdTe/CdS/CIO central part of the device with a CdCl2vapor ambient made the conversion efficiency of the Au/Cu2Te/CdTe/CdS/CIO/glass heterostructure reaches 9.94% for the CdTe layer with thickness of 1.8 μm. This efficiency was reached only through an open circuit voltageVOCoptimization. A maximumηof 12.1% was reached with the established procedure of optimization and when the CdTe layer thickness was increased to 3.1 ± 0.05 μm. The substitution of CIO by commercial ITO provoked in the cell a decrease ofηfrom 12.1% to 7.2%, both devices prepared under the same conditions. Starting from these results, we can say that CIO was a better TCO than commercial ITO in our solar cell, with the advantage that CIO was obtained by sol-gel, which is a simple and economical technique.


2016 ◽  
Vol 213 (7) ◽  
pp. 1942-1948
Author(s):  
Chao Zhang ◽  
Tsvetelina Merdzhanova ◽  
Matthias Meier ◽  
Nicolas Sommer ◽  
Oleksandr Astakhov

2018 ◽  
Vol 9 ◽  
pp. 1802-1808 ◽  
Author(s):  
Katherine Atamanuk ◽  
Justin Luria ◽  
Bryan D Huey

The nanoscale optoelectronic properties of materials can be especially important for polycrystalline photovoltaics including many sensor and solar cell designs. For thin film solar cells such as CdTe, the open-circuit voltage and short-circuit current are especially critical performance indicators, often varying between and even within individual grains. A new method for directly mapping the open-circuit voltage leverages photo-conducting AFM, along with an additional proportional-integral-derivative feedback loop configured to maintain open-circuit conditions while scanning. Alternating with short-circuit current mapping efficiently provides complementary insight into the highly microstructurally sensitive local and ensemble photovoltaic performance. Furthermore, direct open-circuit voltage mapping is compatible with tomographic AFM, which additionally leverages gradual nanoscale milling by the AFM probe essentially for serial sectioning. The two-dimensional and three-dimensional results for CdTe solar cells during in situ illumination reveal local to mesoscale contributions to PV performance based on the order of magnitude variations in photovoltaic properties with distinct grains, at grain boundaries, and for sub-granular planar defects.


2019 ◽  
Vol 2 (11) ◽  
pp. 7843-7849
Author(s):  
Jakapan Chantana ◽  
Takahito Nishimura ◽  
Yu Kawano ◽  
Seiki Teraji ◽  
Taichi Watanabe ◽  
...  

MRS Advances ◽  
2019 ◽  
Vol 4 (36) ◽  
pp. 2001-2007
Author(s):  
Enfang He ◽  
Hong Zhang ◽  
Yueyue Gao ◽  
Fengyun Guo ◽  
Shiyong Gao ◽  
...  

ABSTRACT:Two benzodifuran (BDF) polymers, PBDF-C and PBDF-S, with alkyl and alkylthio substituted thiophene side-chains and benzodithiophene-4,8-dione (BDD) as the acceptor were designed and synthesized. Their optical, electrochemical properties and photovoltaic performances were systematically investigated. The polymer solar cells (PSCs) with a device structure of ITO/PEDOT:PSS/polymer:PC71BM/Ca/Al were fabricated. The PBDF-C based device showed a power conversion efficiency (PCE) of 3.01% after adding 1 vol% 1,8-diodooctane (DIO) as the solvent additive, and PBDF-S gave an enhanced PCE of 3.48% without any post-treatments. The enhancements were from the higher open-circuit voltage (Voc) and fill factor (FF). The thermal- and solvent-treatment-free processing is more favourable for the large area roll-to-roll manufacturing or printing technology for PSCs.


2018 ◽  
Vol 6 (14) ◽  
pp. 3731-3742 ◽  
Author(s):  
Ruurd Heuvel ◽  
Fallon J. M. Colberts ◽  
Martijn M. Wienk ◽  
René A. J. Janssen

Polythiophene derivatives with ester side chains enable high open-circuit voltages in polymer–fullerene solar cells. The side chains affect the solubility, thermal properties, tendency to aggregate, and photovoltaic performance by modulating the morphology of the blends.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Marcel M. Said ◽  
Yadong Zhang ◽  
Raghunath R. Dasari ◽  
Dalaver H. Anjum ◽  
Rahim Munir ◽  
...  

AbstractPoly(3-hexylthiophene) (P3HT) films and P3HT / fullerene photovoltaic cells have been p-doped with very low levels (< 1 wt. %) of molybdenum tris[1-(trifluoromethylcarbonyl)- 2-(trifluoromethyl)-ethane-1,2-dithiolene]. The dopants are inhomogenously distributed within doped P3HT films, both laterally and as a function of depth, and appear to aggregate in some instances. Doping also results in subtle changes in the local and long range order of the P3HT film. These effects likely contribute to the complexity of the observed evolutions in conductivity, mobility and work function with doping levels. They also negatively affect the open-circuit voltage and fill factor of solar cells in unexpected ways, indicating that dopant aggregation and non-uniform distribution can harm device performance.


2015 ◽  
Vol 3 (4) ◽  
pp. 1530-1539 ◽  
Author(s):  
Aung Ko Ko Kyaw ◽  
Dominik Gehrig ◽  
Jie Zhang ◽  
Ye Huang ◽  
Guillermo C. Bazan ◽  
...  

A high VOC of 1V is achieved in the bulk heterojunction solar cell using the solution-processed small molecule donor p-DTS(FBTTh2)2 and indene-C60 bis-adduct acceptor.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1461 ◽  
Author(s):  
Jianfeng Li ◽  
Yufei Wang ◽  
Ningning Wang ◽  
Zezhou Liang ◽  
Xu Wang ◽  
...  

A novel (E)-5-(2-(5-alkylthiothiophen-2-yl)vinyl)thien-2-yl (TVT)-comprising benzo[1,2-b:4,5-b’]dithiophene (BDT) derivative (BDT-TVT) was designed and synthetized to compose two donor-acceptor (D-A) typed copolymers (PBDT-TVT-ID and PBDT-TVT-DTNT) with the electron-withdrawing unit isoindigo (ID) and naphtho[1,2-c:5,6-c′]bis[1,2,5]thiadiazole (NT), respectively. PBDT-TVT-ID and PBDT-TVT-DTNT showed good thermal stability (360 °C), an absorption spectrum from 300 nm to 760 nm and a relatively low lying energy level of Highest Occupied Molecular Orbital (EHOMO) (−5.36 to –5.45 eV), which could obtain a large open-circuit voltage (Voc) from photovoltaic devices with PBDT-TVT-ID or PBDT-TVT-DTNT. The photovoltaic devices with ITO/PFN/polymers: PC71BM/MoO3/Ag structure were assembled and exhibited a good photovoltaic performance with a power conversion efficiency (PCE) of 4.09% (PBDT-TVT-ID) and 5.44% (PBDT-TVT-DTNT), respectively. The best PCE of a PBDT-TVT-DTNT/PC71BM-based device mainly originated from its wider absorption, higher hole mobility and favorable photoactive layer morphology.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Giovanni Landi ◽  
Andrea Sorrentino ◽  
Salvatore Iannace ◽  
Heinrich C. Neitzert

A gelatin/graphene composite has been analyzed by means of current density-voltage and the electrical impedance measurements. The DC electrical behavior has been interpreted in terms of an equivalent Thévenin model taking into account the open circuit voltage and the series resistance. A model based on the effect of the electrical double layer and on the diffusion of the charge carriers is used for the analysis of the experimental data, obtained in the frequency domain. The model reveals for any applied voltages a marked diffusion process at low frequencies. In particular, where the charge transfer mechanism is dominant, the time distribution of the reaction rates reveals that several multiple step reactions occur in the materials, especially at high values of the applied forward bias voltages.


Sign in / Sign up

Export Citation Format

Share Document