Native Defects in the Ternary Chalcopyrites

MRS Bulletin ◽  
1998 ◽  
Vol 23 (7) ◽  
pp. 37-40 ◽  
Author(s):  
N.C. Giles ◽  
L.E. Halliburton

Ternary-chalcopyrite crystals contain a variety of point defects—the most common of which are vacancies, antisite ions, and impurities. Usually these defects are isolated, but they can also appear as complexes involving two or more of the simple defects. Depending on the material, the concentrations of these defects may vary from a few hundred parts per billion to a few hundred parts per million. Many of the point defects in the ternary chalcopyrites have associated optical-absorption bands with significant oscillator strengths. It is these absorption features that become important when the crystals are exposed to intense laser beams during device operation. Even a small amount of absorption will seriously degrade the performance of the device if any of the wavelengths of the various propagating beams happen to overlap an absorption band. This phenomenon can be a problem for both second-harmonic-generator and optical-parametric-oscillator applications. In general the absorption leads to heating of the crystal and results in-thermal lensing (due to temperature dependence of the index of refraction) and dephasing of the beams, and it can ultimately lead to thermal fracturing of the crystal. Thus it is important to develop a fundamental understanding of the defect structure of the ternary-chalcopyrite crystals if they are to serve as the critical component in midinfrared frequency-conversion devices. Once the nature and behavior of the point defects are established, processes can be developed to remove the defects from the crystals either during the growth itself or during post-growth treatments.

Solid Earth ◽  
2017 ◽  
Vol 8 (5) ◽  
pp. 1025-1045 ◽  
Author(s):  
Andreas K. Kronenberg ◽  
Hasnor F. B. Hasnan ◽  
Caleb W. Holyoke III ◽  
Richard D. Law ◽  
Zhenxian Liu ◽  
...  

Abstract. Previous measurements of water in deformed quartzites using conventional Fourier transform infrared spectroscopy (FTIR) instruments have shown that water contents of larger grains vary from one grain to another. However, the non-equilibrium variations in water content between neighboring grains and within quartz grains cannot be interrogated further without greater measurement resolution, nor can water contents be measured in finely recrystallized grains without including absorption bands due to fluid inclusions, films, and secondary minerals at grain boundaries.Synchrotron infrared (IR) radiation coupled to a FTIR spectrometer has allowed us to distinguish and measure OH bands due to fluid inclusions, hydrogen point defects, and secondary hydrous mineral inclusions through an aperture of 10 µm for specimens > 40 µm thick. Doubly polished infrared (IR) plates can be prepared with thicknesses down to 4–8 µm, but measurement of small OH bands is currently limited by strong interference fringes for samples < 25 µm thick, precluding measurements of water within individual, finely recrystallized grains. By translating specimens under the 10 µm IR beam by steps of 10 to 50 µm, using a software-controlled x − y stage, spectra have been collected over specimen areas of nearly 4.5 mm2. This technique allowed us to separate and quantify broad OH bands due to fluid inclusions in quartz and OH bands due to micas and map their distributions in quartzites from the Moine Thrust (Scotland) and Main Central Thrust (Himalayas).Mylonitic quartzites deformed under greenschist facies conditions in the footwall to the Moine Thrust (MT) exhibit a large and variable 3400 cm−1 OH absorption band due to molecular water, and maps of water content corresponding to fluid inclusions show that inclusion densities correlate with deformation and recrystallization microstructures. Quartz grains of mylonitic orthogneisses and paragneisses deformed under amphibolite conditions in the hanging wall to the Main Central Thrust (MCT) exhibit smaller broad OH bands, and spectra are dominated by sharp bands at 3595 to 3379 cm−1 due to hydrogen point defects that appear to have uniform, equilibrium concentrations in the driest samples. The broad OH band at 3400 cm−1 in these rocks is much less common. The variable water concentrations of MT quartzites and lack of detectable water in highly sheared MCT mylonites challenge our understanding of quartz rheology. However, where water absorption bands can be detected and compared with deformation microstructures, OH concentration maps provide information on the histories of deformation and recovery, evidence for the introduction and loss of fluid inclusions, and water weakening processes.


1992 ◽  
Vol 01 (01) ◽  
pp. 51-72 ◽  
Author(s):  
Y.J. DING ◽  
A.E. KAPLAN

The photon-photon scattering predicted by quantum electrodynamics can give rise to second-harmonic generation of intense laser radiation in a dc magnetic field due to broken symmetry of interaction even in the “box” diagram approximation. This effect is possible only when the field system (i.e. optical wave+dc field) is inhomogeneous, in particular when a Gaussian laser beam (i.e. nonplane wave) propagates in either homogeneous or inhomogeneous dc magnetic field.


2015 ◽  
Vol 24 (04) ◽  
pp. 1550041 ◽  
Author(s):  
Minakshi Deb Barma ◽  
Sumita Deb ◽  
Ardhendu Saha

This paper analyzes a highly efficient broadband second-harmonic generator in the mid infrared region using an isotropic reverse tapered semiconductor slab configuration, using fractional total internal reflection quasi-phase matching technique. A computer aided simulation has been performed using ZnTe as the nonlinear material which provides an extremely high conversion efficiency of 22.94% with a 3[Formula: see text]dB bandwidth of 200[Formula: see text]nm. Effect of varying the slab dimensions on the performance parameters has also been analyzed. Finally, the catastrophic effect caused by destructive interference due to nonlinear law of reflection has also been incorporated in the analysis thereby giving more accurate results.


2021 ◽  
Vol 255 ◽  
pp. 06003
Author(s):  
Rajeev Ranjan ◽  
Maria Antonietta Ferrara ◽  
Luigi Sirleto

In this work, the implementation of a femtosecond Stimulated Raman Scattering microscope, equipped with three femtosecond laser sources: a Titanium-Sapphire (Ti:Sa), an optical parametric oscillator (OPO), and a second harmonic generator (SHG); is presented. Our microscope is designed so that it can cover all the regions of Raman spectra, taking advantage of two possible laser combinations. The first, Ti:Sa and OPO laser beams, which cover the C-H region (>2800 cm-1 ) in stimulated Raman gain (SRG) modality, whereas the second, Ti:Sa and SHG laser beams, covering the C-H region and the fingerprint region in stimulated Raman losses (SRL) modality. The successful realization of the microscope is demonstrated, reporting images of polystyrene beads using both SRL and SRG modalities.


1997 ◽  
Vol 502 ◽  
Author(s):  
C. L. Bungay ◽  
T. E. Tiwald ◽  
M. J. DeVries ◽  
B. J. Dworak ◽  
John A. Woollam

ABSTRACTAtomic Oxygen (AO) and ultraviolet (UV) radiation contribute (including synergistically) to degradation of spacecraft materials in Low Earth Orbit (LEO). NASA is, therefore, interested in determining what effects the harsh LEO environment has on materials exposed to it, as well as develop materials that are more AO and UV resistant. The present work involves the study of AO and UV effects on polyarylene ether benzimidazole (PAEBI) with in situ and ex situ spectroscopic ellipsometry. PAEBI is a polymer proposed for space applications due to its reported ability to form a protective phosphorous oxide on the surface when exposed to AO. In our experiments PAEBI was exposed to UV radiation from a xenon lamp while in situ ellipsometry data were acquired. The effects of UV radiation were modeled as an exponentially graded layer on the surface of bulk PAEBI. The change in UV absorption spectra, depth profile of the index of refraction, and growth trends of the UV irradiated PAEBI were all studied in these experiments. In addition, PAEBI was exposed to an oxygen plasma to simulate the synergistic effects of AO and UV. Ellipsometry data were acquired in-line with both a UV-Visible ellipsometer and an infrared ellipsometer. The change in UV absorption bands and index of refraction due to synergistic AO/UV, as well as the growth trends of the oxide layer were studied.


2004 ◽  
Vol 43 (11) ◽  
pp. 2353
Author(s):  
T. Sean Ross ◽  
Gerald T. Moore

2018 ◽  
Vol 9 ◽  
pp. 2306-2314 ◽  
Author(s):  
Valerio F Gili ◽  
Lavinia Ghirardini ◽  
Davide Rocco ◽  
Giuseppe Marino ◽  
Ivan Favero ◽  
...  

Background: Dielectric nanoantennas have recently emerged as an alternative solution to plasmonics for nonlinear light manipulation at the nanoscale, thanks to the magnetic and electric resonances, the strong nonlinearities, and the low ohmic losses characterizing high refractive-index materials in the visible/near-infrared (NIR) region of the spectrum. In this frame, AlGaAs nanoantennas demonstrated to be extremely efficient sources of second harmonic radiation. In particular, the nonlinear polarization of an optical system pumped at the anapole mode can be potentially boosted, due to both the strong dip in the scattering spectrum and the near-field enhancement, which are characteristic of this mode. Plasmonic nanostructures, on the other hand, remain the most promising solution to achieve strong local field confinement, especially in the NIR, where metals such as gold display relatively low losses. Results: We present a nonlinear hybrid antenna based on an AlGaAs nanopillar surrounded by a gold ring, which merges in a single platform the strong field confinement typically produced by plasmonic antennas with the high nonlinearity and low loss characteristics of dielectric nanoantennas. This platform allows enhancing the coupling of light to the nanopillar at coincidence with the anapole mode, hence boosting both second- and third-harmonic generation conversion efficiencies. More than one order of magnitude enhancement factors are measured for both processes with respect to the isolated structure. Conclusion: The present results reveal the possibility to achieve tuneable metamixers and higher resolution in nonlinear sensing and spectroscopy, by means of improved both pump coupling and emission efficiency due to the excitation of the anapole mode enhanced by the plasmonic nanoantenna.


1985 ◽  
Vol 57 (3-4) ◽  
pp. 313-316
Author(s):  
J. Bakos ◽  
T. Juhász ◽  
Cs. Kuti ◽  
L. V. Vannay

Sign in / Sign up

Export Citation Format

Share Document