scholarly journals Micro Epitaxial lateral overgrowth of GaN/sapphire by Metal Organic Vapour Phase Epitaxy

Author(s):  
E. Frayssinet ◽  
B. Beaumont ◽  
J. P. Faurie ◽  
Pierre Gibart ◽  
Zs. Makkai ◽  
...  

GaN/sapphire layers have been grown by Metal Organic Vapour Phase Epitaxy (MOVPE). An amorphous silicon nitride layer is deposited using a SiH4/NH3 mixture prior to the growth of the low temperature GaN buffer layer. Such a process induces a 3D nucleation at the early beginning of the growth, resulting in a kind of maskless ELO process with random opening sizes. This produces a significant decrease of the threading dislocation (TD) density compared to the best GaN/sapphire templates. Ultra Low Dislocation density (ULD) GaN layers were obtained with TD density as low as 7×107cm−2 as measured by atomic force microscopy (AFM), cathodoluminescence and transmission electron microscopy (TEM). Time-resolved photoluminescence experiments show that the lifetime of the A free exciton is principally limited by capture onto residual donors, similar to the situation for nearly dislocation-free homoepitaxial layers.

2015 ◽  
Vol 3 (2) ◽  
pp. 431-437 ◽  
Author(s):  
Michele Conroy ◽  
Vitaly Z. Zubialevich ◽  
Haoning Li ◽  
Nikolay Petkov ◽  
Justin D. Holmes ◽  
...  

We report an inexpensive nanoscale patterning process for epitaxial lateral overgrowth (ELOG) in AlN layers grown by metal organic vapour phase epitaxy (MOVPE) on sapphire.


2005 ◽  
Vol 892 ◽  
Author(s):  
Rachel Oliver ◽  
Menno J. Kappers ◽  
Joy Sumner ◽  
Ranjan Datta ◽  
Colin J. Humphreys

AbstractFast-turnaround, accurate methods for the assessment of threading dislocation densities in GaN are an essential research tool. Here, we present an in-situ surface treatment for use in MOVPE (metal-organic vapour phase epitaxy) growth, in which GaN is exposed to a SiH4 flux at 860 °C in the presence of NH3. Subsequent characterisation by atomic force microscopy shows that the treatment is effective in increasing edge and mixed/screw dislocation pit sizes on both n- and p-type material, and on partially coalesced GaN layers.


1991 ◽  
Vol 69 (3-4) ◽  
pp. 456-460
Author(s):  
R. Leonelli ◽  
D. Morris ◽  
J. L. Brebner ◽  
Duan Jiaqi ◽  
A. P. Roth ◽  
...  

We report the results of time-resolved photoluminescence studies of the near band-gap emission from relaxed, nonpseudomorphic In0.06Ga0.94As layers grown by metal-organic vapour-phase epitaxy on GaAs substrates oriented exactly on the (001) plane and misoriented by 2° off (001) towards <110>. The layer grown on the misoriented substrate shows a narrow excitonic emission whose lifetime of 1.2 ns is indicative of the high quality of the material. The emission from the layer grown on the oriented substrate consists of four bands. Their time-resolved spectra indicate that they can be attributed to excitons bound to different distributions of levels located either in homogeneous, strain-free regions or in regions near the epilayer misfit dislocations. We also present evidence indicating that hydrogen is more readily incorporated in layers grown on oriented substrates.


1998 ◽  
Vol 184-185 ◽  
pp. 1338 ◽  
Author(s):  
D.N. Gnoth ◽  
T.L. Ng ◽  
I.B. Poole ◽  
D.A. Evans ◽  
N. Maung ◽  
...  

1996 ◽  
Vol 05 (04) ◽  
pp. 621-629 ◽  
Author(s):  
J. VALENTA ◽  
D. GUENNANI ◽  
A. MANAR ◽  
P. GILLIOT

The detailed characterization of metal organic vapour phase epitaxy grown ZnS layers on GaAs is the first step towards the study of their different non-linear optical properties performed with nanosecond lasers. Biexciton phenomena (with a binding energy of about 10 meV) are observed in photoluminescence-excitation and optical-gain spectra.


1985 ◽  
Vol 63 (6) ◽  
pp. 732-735 ◽  
Author(s):  
M. Benzaquen ◽  
D. Walsh ◽  
J. Auclair

Lightly compensated epitactic n-type GaAs is obtained by metal-organic vapour-phase epitaxy (MOVPE) with free-carrier concentration in the low 1015 cm−3 range and with good uniformity of both thickness and impurity concentrations over a 2-in.-diameter area (1 in. = 2.54 cm). Detailed Hall-effect and photoluminescence measurements are reported. At temperatures below 8 K, the conductivity is governed by variable-range hopping, clearly indicating a band of localized donor states. At higher impurity concentrations, a metallic contribution to the conductivity suggests a buildup of extended states near the middle of this band. These results are consistent with the observed photoluminescence.


1993 ◽  
Vol 46 (3) ◽  
pp. 435
Author(s):  
C Jagadish ◽  
A Clark ◽  
G Li ◽  
CA Larson ◽  
N Hauser ◽  
...  

Undoped and doped layers of gallium arsenide and aluminium gallium arsenide have been grown on gallium arsenide by low-pressure metal organic vapour-phase epitaxy (MOVPE). Delta doping and growth on silicon substrates have also been attempted. Of particular interest in the present study has been the influence of growth parameters, such as growth temperature, group III mole fraction and dopant flow, on the electrical and physical properties of gallium arsenide layers. An increase in growth temperature leads to increased doping efficiency in the case of silicon, whereas the opposite is true in the case of zinc. Deep level transient spectroscopy (DTLS) studies on undoped GaAs layers showed two levels, the expected EL2 level and a carbon-related level. The determination of optimum growth conditions has allowed good quality GaAs and AlGaAs epitaxial layers to be produced for a range of applications.`


1994 ◽  
Vol 9 (11) ◽  
pp. 2073-2079 ◽  
Author(s):  
A Chergui ◽  
J Valenta ◽  
J L Loison ◽  
M Robino ◽  
I Pelant ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document