Ultrawide-bandgap semiconductors: An overview

Author(s):  
Man Hoi Wong ◽  
Oliver Bierwagen ◽  
Robert J. Kaplar ◽  
Hitoshi Umezawa
2021 ◽  
Vol 7 (16) ◽  
pp. eabf7358
Author(s):  
Meng Peng ◽  
Runzhang Xie ◽  
Zhen Wang ◽  
Peng Wang ◽  
Fang Wang ◽  
...  

Blackbody-sensitive room-temperature infrared detection is a notable development direction for future low-dimensional infrared photodetectors. However, because of the limitations of responsivity and spectral response range for low-dimensional narrow bandgap semiconductors, few low-dimensional infrared photodetectors exhibit blackbody sensitivity. Here, highly crystalline tellurium (Te) nanowires and two-dimensional nanosheets were synthesized by using chemical vapor deposition. The low-dimensional Te shows high hole mobility and broadband detection. The blackbody-sensitive infrared detection of Te devices was demonstrated. A high responsivity of 6650 A W−1 (at 1550-nm laser) and the blackbody responsivity of 5.19 A W−1 were achieved. High-resolution imaging based on Te photodetectors was successfully obtained. All the results suggest that the chemical vapor deposition–grown low-dimensional Te is one of the competitive candidates for sensitive focal-plane-array infrared photodetectors at room temperature.


2017 ◽  
Vol 64 (3) ◽  
pp. 856-873 ◽  
Author(s):  
T. Paul Chow ◽  
Ichiro Omura ◽  
Masataka Higashiwaki ◽  
Hiroshi Kawarada ◽  
Vipindas Pala

MRS Bulletin ◽  
1997 ◽  
Vol 22 (6) ◽  
pp. 31-38 ◽  
Author(s):  
Yang Yang

Electroluminescence (EL) is the emission of light generated from the radiative recombination of electrons and holes electrically injected into a luminescent semiconductor. Conventional EL devices are made of inorganic direct-bandgap semiconductors, such as GaAs and InGaAs. Recently EL devices based on conjugated organic small molecules and polymers have attracted increasing attention due to easy fabrication of large areas, unlimited choice of colors, and mechanical flexibility. Potential applications of these organic/polymeric EL devices include backlights for displays, alphanumeric displays, and high-density information displays.Electroluminescence from an organic material was first demonstrated in the 1960s on anthracene crystals by Pope et al. at New York University. Subsequently several other groups also observed this phenomenon in organic crystals and thin films. These organic EL devices had high operating voltages and low quantum efficiency. Consequently they did not attract much attention. In 1987 a breakthrough was made by Tang and VanSlyke at Eastman Kodak who found that by using multilayers of sublimated organic molecules, the operating voltage of the organic EL devices was dramatically reduced and the quantum efficiency was significantly enhanced. This discovery touched off a flurry of research activity, especially in Japan. The Japanese researchers, as welt as the group at Kodak, have since improved the device efficiency and lifetime to meet commercial requirements. This progress is reviewed by Tsutsui in this issue.


2002 ◽  
Vol 743 ◽  
Author(s):  
W. Alan Doolittle ◽  
Gon Namkoong ◽  
Alexander Carver ◽  
Walter Henderson ◽  
Dieter Jundt ◽  
...  

ABSTRACTHerein, we discuss the use of a novel new substrate for III-Nitride epitaxy, Lithium Niobate. It is shown that Lithium Niobate (LN) has a smaller lattice mismatch to III-Nitrides than sapphire and can be used to control the polarity of III-Nitride films grown by plasma assisted molecular beam epitaxy. Results from initial growth studies are reported including using various nitridation/buffer conditions along with structural and optical characterization. Comparisons of data obtained from GaN and AlN buffer layers are offered and details of the film adhesion dependence on buffer layer conditions is presented. Lateral polarization heterostructures grown on periodically poled LN are also demonstrated. While work is still required to establish the limits of the methods proposed herein, these initial studies offer the promise for mixing III-Nitride semiconductor materials with lithium niobate allowing wide bandgap semiconductors to utilize the acoustic, pyroelectric/ferroelectric, electro-optic, and nonlinear optical properties of this new substrate material as well as the ability to engineer various polarization structures for future devices.


2016 ◽  
Vol 30 (13) ◽  
pp. 1642015
Author(s):  
P. Prelovšek ◽  
Z. Lenarčič

Recent femtosecond pump-probe experiments on Mott insulators reveal charge recombination, which is in picosecond range, i.e., much faster than in clean bandgap semiconductors although excitation gaps in Mott insulators are even larger. The charge response in photo-excited insulators can be generally divided in femtosecond transient relaxation of charge excitations, which are holons and doublons, and a second slower, but still very fast, holon–doublon (HD) recombination. We present a theory of the recombination rate of the excited HD pairs, based on the two-dimensional (2D) model relevant for cuprates, which shows that such fast processes can be explained even quantitatively with the multi-magnon emission. We show that the condition for the exponential decay as observed in the experiment is the existence of the exciton, i.e., the bound HD pair. Its recombination rate is exponentially dependent on the charge gap and on the magnon energy, while the ultrafast process can be traced back to strong charge-spin coupling. We comment also fast recombination times in the one-dimensional (1D) Mott insulators, as e.g., organic salts. The recombination rate in the latter cases can be explained with the stronger coupling with phonon excitations.


2015 ◽  
Vol 2015 ◽  
pp. 1-2
Author(s):  
Meiyong Liao ◽  
Thomas Stergiopoulos ◽  
Jose Alvarez ◽  
Surojit Chattopadhyay ◽  
Guihua Zhang

Sign in / Sign up

Export Citation Format

Share Document