scholarly journals Development of an algorithm for calculating stable solutions of the Saint-Venant equation using an upwind implicit difference scheme

2021 ◽  
Vol 4 (4(112)) ◽  
pp. 47-56
Author(s):  
Rakhmatillo Aloev ◽  
Abdumauvlen Berdyshev ◽  
Aziza Akbarova ◽  
Zharasbek Baishemirov

The problem of numerical determination of Lyapunov-stable (exponential stability) solutions of the Saint-Venant equations system has remained open until now. The authors of this paper previously proposed an implicit upwind difference splitting scheme, but its practical applicability was not indicated there. In this paper, the problem is solved successfully, namely, an algorithm for calculating Lyapunov-stable solutions of the Saint-Venant equations system is developed and implemented using an upwind implicit difference splitting scheme on the example of the Big Almaty Canal (hereinafter BAC). As a result of the proposed algorithm application, it was established that: 1) we were able to perform a computational calculation of the numerical determination problem of the water level and velocity on a part of the BAC (10,000 meters) located in the Almaty region; 2) the numerical values of the water level height and horizontal velocity are consistent with the actual measurements of the parameters of the water flow in the BAC; 3) the proposed computational algorithm is stable; 4) the numerical stationary solution of the system of Saint-Venant equations on the example of the BAC is Lyapunov-stable (exponentially stable); 5) the obtained results (according to the BAC) show the efficiency of the developed algorithm based on an implicit upwind difference scheme according to the calculated time. Since we managed to increase the values of the difference grid time step up to 0.8 for calculating the numerical solution according to the proposed implicit scheme.

Author(s):  
Mahipal Jetta

The standard finite difference scheme (forward difference approximation for time derivative and central difference approximations for spatial derivatives) for fourth-order nonlinear diffusion filter allows very small time-step size to obtain stable results. The alternating directional implicit (ADI) splitting scheme such as Douglas method is highly stable but compromises accuracy for a relatively larger time-step size. In this paper, we develop [Formula: see text] stencils for the approximation of second-order spatial derivatives based on the finite pointset method. We then make use of these stencils for approximating the fourth-order partial differential equation. We show that the proposed scheme allows relatively bigger time-step size than the standard finite difference scheme, without compromising on the quality of the filtered image. Further, we demonstrate through numerical simulations that the proposed scheme is more efficient, in obtaining quality filtered image, than an ADI splitting scheme.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 352
Author(s):  
Fengnan Liu ◽  
Yasuhide Fukumoto ◽  
Xiaopeng Zhao

A stable explicit difference scheme, which is based on forward Euler format, is proposed for the Richards equation. To avoid the degeneracy of the Richards equation, we add a perturbation to the functional coefficient of the parabolic term. In addition, we introduce an extra term in the difference scheme which is used to relax the time step restriction for improving the stability condition. With the augmented terms, we prove the stability using the induction method. Numerical experiments show the validity and the accuracy of the scheme, along with its efficiency.


1994 ◽  
Vol 29 (1-2) ◽  
pp. 53-61
Author(s):  
Ben Chie Yen

Urban drainage models utilize hydraulics of different levels. Developing or selecting a model appropriate to a particular project is not an easy task. Not knowing the hydraulic principles and numerical techniques used in an existing model, users often misuse and abuse the model. Hydraulically, the use of the Saint-Venant equations is not always necessary. In many cases the kinematic wave equation is inadequate because of the backwater effect, whereas in designing sewers, often Manning's formula is adequate. The flow travel time provides a guide in selecting the computational time step At, which in turn, together with flow unsteadiness, helps in the selection of steady or unsteady flow routing. Often the noninertia model is the appropriate model for unsteady flow routing, whereas delivery curves are very useful for stepwise steady nonuniform flow routing and for determination of channel capacity.


2019 ◽  
Vol 23 (3) ◽  
pp. 1281-1304 ◽  
Author(s):  
Ben R. Hodges

Abstract. New integral, finite-volume forms of the Saint-Venant equations for one-dimensional (1-D) open-channel flow are derived. The new equations are in the flux-gradient conservation form and transfer portions of both the hydrostatic pressure force and the gravitational force from the source term to the conservative flux term. This approach prevents irregular channel topography from creating an inherently non-smooth source term for momentum. The derivation introduces an analytical approximation of the free surface across a finite-volume element (e.g., linear, parabolic) with a weighting function for quadrature with bottom topography. This new free-surface/topography approach provides a single term that approximates the integrated piezometric pressure over a control volume that can be split between the source and the conservative flux terms without introducing new variables within the discretization. The resulting conservative finite-volume equations are written entirely in terms of flow rates, cross-sectional areas, and water surface elevations – without using the bottom slope (S0). The new Saint-Venant equation form is (1) inherently conservative, as compared to non-conservative finite-difference forms, and (2) inherently well-balanced for irregular topography, as compared to conservative finite-volume forms using the Cunge–Liggett approach that rely on two integrations of topography. It is likely that this new equation form will be more tractable for large-scale simulations of river networks and urban drainage systems with highly variable topography as it ensures the inhomogeneous source term of the momentum conservation equation is Lipschitz smooth as long as the solution variables are smooth.


2019 ◽  
Vol 26 (3) ◽  
pp. 341-349 ◽  
Author(s):  
Givi Berikelashvili ◽  
Manana Mirianashvili

Abstract A three-level finite difference scheme is studied for the initial-boundary value problem of the generalized Benjamin–Bona–Mahony–Burgers equation. The obtained algebraic equations are linear with respect to the values of the desired function for each new level. The unique solvability and absolute stability of the difference scheme are shown. It is proved that the scheme is convergent with the rate of order {k-1} when the exact solution belongs to the Sobolev space {W_{2}^{k}(Q)} , {1<k\leq 3} .


RBRH ◽  
2018 ◽  
Vol 23 (0) ◽  
Author(s):  
Alice César Fassoni-Andrade ◽  
Fernando Mainardi Fan ◽  
Walter Collischonn ◽  
Artur César Fassoni ◽  
Rodrigo Cauduro Dias de Paiva

ABSTRACT The one-dimensional flow routing inertial model, formulated as an explicit solution, has advantages over other explicit models used in hydrological models that simplify the Saint-Venant equations. The main advantage is a simple formulation with good results. However, the inertial model is restricted to a small time step to avoid numerical instability. This paper proposes six numerical schemes that modify the one-dimensional inertial model in order to increase the numerical stability of the solution. The proposed numerical schemes were compared to the original scheme in four situations of river’s slope (normal, low, high and very high) and in two situations where the river is subject to downstream effects (dam backwater and tides). The results are discussed in terms of stability, peak flow, processing time, volume conservation error and RMSE (Root Mean Square Error). In general, the schemes showed improvement relative to each type of application. In particular, the numerical scheme here called Prog Q(k+1)xQ(k+1) stood out presenting advantages with greater numerical stability in relation to the original scheme. However, this scheme was not successful in the tide simulation situation. In addition, it was observed that the inclusion of the hydraulic radius calculation without simplification in the numerical schemes improved the results without increasing the computational time.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1652
Author(s):  
Dong-Sin Shih ◽  
Gour-Tsyh Yeh

One-dimensional (1D) Saint-Venant equations, which originated from the Navier–Stokes equations, are usually applied to express the transient stream flow. The governing equation is based on the mass continuity and momentum equivalence. Its momentum equation, partially comprising the inertia, pressure, gravity, and friction-induced momentum loss terms, can be expressed as kinematic wave (KIW), diffusion wave (DIW), and fully dynamic wave (DYW) flow. In this study, the method of characteristics (MOCs) is used for solving the diagonalized Saint-Venant equations. A computer model, CAMP1DF, including KIW, DIW, and DYW approximations, is developed. Benchmark problems from MacDonald et al. (1997) are examined to study the accuracy of the CAMP1DF model. The simulations revealed that CAMP1DF can simulate almost identical results that are valid for various fluvial conditions. The proposed scheme that not only allows a large time step size but also solves half of the simultaneous algebraic equations. Simulations of accuracy and efficiency are both improved. Based on the physical relevance, the simulations clearly showed that the DYW approximation has the best performance, whereas the KIW approximation results in the largest errors. Moreover, the field non-prismatic case of the Zhuoshui River in central Taiwan is studied. The simulations indicate that the DYW approach does not ensure achievement of a better simulation result than the other two approximations. The investigated cross-sectional geometries play an important role in stream routing. Because of the consideration of the acceleration terms, the simulated hydrograph of a DYW reveals more physical characteristics, particularly regarding the raising and recession of limbs. Note that the KIW does not require assignment of a downstream boundary condition, making it more convenient for field application.


2007 ◽  
Vol 64 (11) ◽  
pp. 4098-4112 ◽  
Author(s):  
Haruma Ishida ◽  
Shoji Asano

Abstract A new calculation scheme is proposed for the explicitly discretized solution of the three-dimensional (3D) radiation transfer equation (RTE) for inhomogeneous atmospheres. To separate the independent variables involved in the 3D RTE approach, the spherical harmonic series expansion was used to discretize the terms, depending on the direction of the radiance, and the finite-volume method was applied to discretize the terms, depending on the spatial coordinates. A bidirectional upwind difference scheme, which is a specialized scheme for the discretization of the partial differential terms in the spherical harmonic-transformed RTE, was developed to make the equation determinate. The 3D RTE can be formulated as a simultaneous linear equation, which is expressed in the form of a vector–matrix equation with a sparse matrix. The successive overrelaxation method was applied to solve this equation. Radiative transfer calculations of the solar radiation in two-dimensional cloud models have shown that this method can properly simulate the radiation field in inhomogeneous clouds. A comparison of the results obtained using this method with those using the Monte Carlo method shows reasonable agreement for the upward flux, the total downward flux, and the intensities of radiance.


2011 ◽  
Vol 47 (5) ◽  
pp. 783-790 ◽  
Author(s):  
N. V. Maiko ◽  
V. G. Prikazchikov ◽  
V. L. Ryabichev

Sign in / Sign up

Export Citation Format

Share Document