scholarly journals Thrombus Formation Inhibition of Esculetin through Regulation of Cyclic Nucleotides on Collagen-Induced Platelets

2021 ◽  
Vol 27 (4) ◽  
pp. 270-276
Author(s):  
Dong-Ha Lee
2012 ◽  
Vol 108 (11) ◽  
pp. 955-962 ◽  
Author(s):  
Alessandra Borgognone ◽  
Fabio Pulcinelli

SummaryCyclic nucleotide-dependent inhibition of platelets represents the most important physiological way to limit thrombus formation. cAMP and cGMP increase in platelets as a consequence of prostacyclin and nitric oxide production by endothelial cells and act through PKA and PKG, respectively. The cytosolic concentration of cyclic nucleotides in platelets is regulated by AC- and GC-dependent synthesis and PDE-dependent degradation. In some cells cyclic nucleotides are eliminated also through MRP4/5/8-dependent efflux. As only MRP4 is expressed in platelets, at high levels in dense granules, we determined its role in the elimination of cyclic nucleotides from platelet cytosol. We studied the effects of MRP4 inhibition on cAMP/cGMP effects in platelets. Cyclic nucleotide inhibitory effects triggered by cAMP and cGMP-elevating agents on platelet aggregation are strongly enhanced by MRP4 inhibition and so is cyclic nucleotide-dependent phosphorylation of the common substrate VASP. MRP4 inhibition decreases cAMP concentration in platelet granules and both cAMP and cGMP compete with an established substrate of MRP4 (fluo-cAMP) for entrance in granules. Here we provide the first evidence of the transport of cyclic nucleotides mediated by MRP4 as part of their physiological mechanism of elimination in human platelets, which might represent a novel target to increase cyclic nucleotide-dependent inhibition.


Author(s):  
Quintin J. Lai ◽  
Stuart L. Cooper ◽  
Ralph M. Albrecht

Thrombus formation and embolization are significant problems for blood-contacting biomedical devices. Two major components of thrombi are blood platelets and the plasma protein, fibrinogen. Previous studies have examined interactions of platelets with polymer surfaces, fibrinogen with platelets, and platelets in suspension with spreading platelets attached to surfaces. Correlative microscopic techniques permit light microscopic observations of labeled living platelets, under static or flow conditions, followed by the observation of identical platelets by electron microscopy. Videoenhanced, differential interference contrast (DIC) light microscopy permits high-resolution, real-time imaging of live platelets and their interactions with surfaces. Interference reflection microscopy (IRM) provides information on the focal adhesion of platelets on surfaces. High voltage, transmission electron microscopy (HVEM) allows observation of platelet cytoskeletal structure of whole mount preparations. Low-voltage, high resolution, scanning electron microscopy allows observation of fine surface detail of platelets. Colloidal gold-labeled fibrinogen, used to identify the Gp Ilb/IIIa membrane receptor for fibrinogen, can be detected in all the above microscopies.


2009 ◽  
Vol 56 (S 01) ◽  
Author(s):  
R Uhl ◽  
M Christoph ◽  
M Weinbeck ◽  
F Beyersdorf
Keyword(s):  

1999 ◽  
Vol 82 (S 01) ◽  
pp. 32-37 ◽  
Author(s):  
Karlheinz Peter ◽  
Wolfgang Kübler ◽  
Johannes Ruef ◽  
Thomas K. Nordt ◽  
Marschall S. Runge ◽  
...  

SummaryThe initiating event of atherogenesis is thought to be an injury to the vessel wall resulting in endothelial dysfunction. This is followed by key features of atherosclerotic plaque formation such as inflammatory responses, cell proliferation and remodeling of the vasculature, finally leading to vascular lesion formation, plaque rupture, thrombosis and tissue infarction. A causative relationship exists between these events and oxidative stress in the vessel wall. Besides leukocytes, vascular cells are a potent source of oxygen-derived free radicals. Oxidants exert mitogenic effects that are partially mediated through generation of growth factors. Mitogens, on the other hand, are potent stimulators of oxidant generation, indicating a putative self-perpetuating mechanism of atherogenesis. Oxidants influence the balance of the coagulation system towards platelet aggregation and thrombus formation. Therapeutic approaches by means of antioxidants are promising in both experimental and clinical designs. However, additional clinical trials are necessary to assess the role of antioxidants in cardiovascular disease.


1999 ◽  
Vol 81 (04) ◽  
pp. 601-604 ◽  
Author(s):  
Hiroyuki Matsuno ◽  
Osamu Kozawa ◽  
Masayuki Niwa ◽  
Shigeru Ueshima ◽  
Osamu Matsuo ◽  
...  

SummaryThe role of fibrinolytic system components in thrombus formation and removal in vivo was investigated in groups of six mice deficient in urokinase-type plasminogen activator (u-PA), tissue-type plasminogen activator (t-PA), or plasminogen activator inhibitor-1 (PAI-1) (u-PA-/-, t-PA-/- or PAI-1-/-, respectively) or of their wild type controls (u-PA+/+, t-PA+/+ or PAI-1+/+). Thrombus was induced in the murine carotid artery by endothelial injury using the photochemical reaction between rose bengal and green light (540 nm). Blood flow was continuously monitored for 90 min on day 0 and for 20 min on days 1, 2 and 3. The times to occlusion after the initiation of endothelial injury in u-PA+/+, t-PA+/+ or PAI-1+/+ mice were 9.4 ± 1.3, 9.8 ± 1.1 or 9.7 ± 1.6 min, respectively. u-PA-/- and t-PA-/- mice were indistinguishable from controls, whereas that of PAI-1-/- mice were significantly prolonged (18.4 ± 3.7 min). Occlusion persisted for the initial 90 min observation period in 10 of 18 wild type mice and was followed by cyclic reflow and reocclusion in the remaining 8 mice. At day 1, persistent occlusion was observed in 1 wild type mouse, 8 mice had cyclic reflow and reocclusion and 9 mice had persistent reflow. At day 2, all injured arteries had persistent reflow. Persistent occlusion for 90 min on day 0 was observed in 3 u-PA-/-, in all t-PA-/- mice at day 1 and in 2 of the t-PA-/-mice at day 2 (p <0.01 versus wild type mice). Persistent patency was observed in all PAI-1-/- mice at day 1 and in 5 of the 6 u-PA-/- mice at day 2 (both p <0.05 versus wild type mice). In conclusion, t-PA increases the rate of clot lysis after endothelial injury, PAI-1 reduces the time to occlusion and delays clot lysis, whereas u-PA has little effect on thrombus formation and spontaneous lysis.


1988 ◽  
Vol 59 (02) ◽  
pp. 225-230 ◽  
Author(s):  
J P Maffrand ◽  
A Bernat ◽  
D Delebassée ◽  
G Defreyn ◽  
J P Cazenave ◽  
...  

SummaryThe relative importance of ADP, arachidonic acid metabolites and serotonin as thrombogenic factors was evaluated in rats by comparing, after oral administration, the effects of two inhibitors of ADP-induced platelet aggregation (ticlopidine and PCR 4099), three cyclo-oxygenase inhibitors (aspirin, triflusal and indobufen) and a selective serotonin 5HT2 receptor antagonist (ketanserin) on platelet aggregation, in four platelet-dependent thrombosis models and on bleeding time. Platelet aggregation induced by ADP and collagen was completely inhibited by ticlopidine and PCR 4099 whereas only the collagen aggregation was reduced by the cyclo-oxygenase inhibitors. Ketanserin or a depletion of platelet serotonin by reserpine did not affect platelet aggregation. Ticlopidine and PCR 4099 greatly prolonged rat tail transection bleeding time. This is probably related to their known ability to inhibit ADP-mediated platelet aggregation. In contrast, the cyclooxygenase inhibitors did not affect bleeding time at all. Reserpine and ketanserin prolonged bleeding time by interfering with the action of serotonin on the vascular wall. Ticlopidine and PCR4099 were very potent antithrombotics in all the models. Aspirin, only at a high dose, inhibited poorly thrombus formation on a silk thread in an arterio-venous shunt, suggesting that the inhibition of cyclo-oxygenase was not responsible. Triflusal was inactive in all models while indobufen slightly reduced thrombus formation in the silk thread and metallic coil models. Ketanserin and reserpine reduced thrombus only in the metallic coil model. Thrombus formation was greatly reduced in fawn-hooded rats, which lack ADP in their platelet dense granules because of a genetic storage pool deficiency. Taken together, the results obtained with the drugs and with the fawn-hooded rats support the concept that ADP plays a key role in thrombogenesis in rats.


1994 ◽  
Vol 71 (01) ◽  
pp. 095-102 ◽  
Author(s):  
Désiré Collen ◽  
Hua Rong Lu ◽  
Jean-Marie Stassen ◽  
Ingrid Vreys ◽  
Tsunehiro Yasuda ◽  
...  

SummaryCyclic Arg-Gly-Asp (RGD) containing synthetic peptides such as L-cysteine, N-(mercaptoacetyl)-D-tyrosyl-L-arginylglycyl-L-a-aspartyl-cyclic (1→5)-sulfide, 5-oxide (G4120) and acetyl-L-cysteinyl-L-asparaginyl-L-prolyl-L-arginyl-glycyl-L-α-aspartyl-[0-methyltyrosyl]-L-arginyl-L-cysteinamide, cyclic 1→9-sulfide (TP9201) bind with high affinity to the platelet GPIIb/IIIa receptor.The relationship between antithrombotic effect, ex vivo platelet aggregation and bleeding time prolongation with both agents was studied in hamsters with a standardized femoral vein endothelial cell injury predisposing to platelet-rich mural thrombosis, and in dogs with a carotid arterial eversion graft inserted in the femoral artery. Intravenous administration of G4120 in hamsters inhibited in vivo thrombus formation with a 50% inhibitory bolus dose (ID50) of approximately 20 μg/kg, ex vivo ADP-induccd platelet aggregation with ID50 of 10 μg/kg, and bolus injection of 1 mg/kg prolonged the bleeding time from 38 ± 9 to 1,100 ± 330 s. Administration of TP9201 in hamsters inhibited in vivo thrombus formation with ID50 of 30 μg/kg, ex vivo platelet aggregation with an ID50 of 50 μg/kg and bolus injection of 1 mg/kg did not prolong the template bleeding time. In the dog eversion graft model, infusion of 100 μg/kg of G4120 over 60 min did not fully inhibit platelet-mediated thrombotic occlusion but was associated with inhibition of ADP-induccd ex vivo platelet aggregation and with prolongation of the template bleeding time from 1.3 ± 0.4 to 12 ± 2 min. Infusion of 300 μg/kg of TP9201 over 60 min completely prevented thrombotic occlusion, inhibited ex vivo platelet aggregation, but was not associated with prolongation of the template bleeding time.TP9201, unlike G4120, inhibits in vivo platelet-mediated thrombus formation without associated prolongation of the template bleeding time.


Sign in / Sign up

Export Citation Format

Share Document