scholarly journals COMPARATIVE STUDY OF POLYMER FIBRE REINFORCED CONCRETE WITH CONVENTIONAL CONCRETE PAVEMENT

2014 ◽  
Vol 03 (01) ◽  
pp. 139-143
Author(s):  
S.A Kanalli .
2018 ◽  
Vol 15 (1) ◽  
pp. 15
Author(s):  
AMIR SYAFIQ SAMSUDIN ◽  
MOHD HISBANY MOHD HASHIM ◽  
SITI HAWA HAMZAH ◽  
AFIDAH ABU BAKAR

Nowadays, demands in the application of fibre in concrete increase gradually as an engineering material. Rapid cost increment of material causes the increase in demand of new technology that provides safe, efficient and economical design for the present and future application. The introduction of ribbed slab reduces concrete materials and thus the cost, but the strength of the structure also reduces due to the reducing of material. Steel fibre reinforced concrete (SFRC) has the ability to maintain a part of its tensile strength prior to crack in order to resist more loading compared to conventional concrete. Meanwhile, the ribbed slab can help in material reduction. This research investigated on the bending strength of 2-ribbed and 3-ribbed concrete slab with steel fibre reinforcement under static loading with a span of 1500 mm and 1000 mm x 75 mm in cross section. An amount of 40 kg/m steel fibre of all total concrete volume was used as reinforcement instead of conventional bars with concrete grade 30 N/mm2. The slab was tested under three-point bending. Load versus deflection curve was plotted to illustrate the result and to compare the deflection between control and ribbed slab. This research shows that SFRC Ribbed Slab capable to withstand the same amount of load as normal slab structure, although the concrete volume reduces up to 20%.


2018 ◽  
Vol 15 (1) ◽  
pp. 15
Author(s):  
Amir Syafiq Samsudin ◽  
Mohd Hisbany Mohd Hashim ◽  
Siti Hawa Hamzah ◽  
Afidah Abu Bakar

Nowadays, demands in the application of fibre in concrete increase gradually as an engineering material. Rapid cost increment of material causes the increase in demand of new technology that provides safe, efficient and economical design for the present and future application. The introduction of ribbed slab reduces concrete materials and thus the cost, but the strength of the structure also reduces due to the reducing of material. Steel fibre reinforced concrete (SFRC) has the ability to maintain a part of its tensile strength prior to crack in order to resist more loading compared to conventional concrete. Meanwhile, the ribbed slab can help in material reduction. This research investigated on the bending strength of 2-ribbed and 3-ribbed concrete slab with steel fibre reinforcement under static loading with a span of 1500 mm and 1000 mm x 75 mm in cross section. An amount of 40 kg/m  steel fibre of all total concrete volume was used as reinforcement instead of conventional bars with concrete grade 30 N/mm2. The slab was tested under three-point bending. Load versus deflection curve was plotted to illustrate the result and to compare the deflection between control and ribbed slab. This research shows that SFRC Ribbed Slab capable to withstand the same amount of load as normal slab structure, although the concrete volume reduces up to 20%.


Author(s):  
Alejandro Enfedaque ◽  
Marcos G. Alberti ◽  
Jaime C. Gálvez

Polyolefin fibre reinforced concrete (PFRC) has become an attractive alternative to steel for the reinforcement of concrete elements mainly due to its chemical stability and the residual strengths that can be reached with lower weights. The use of polyolefin fibres can meet the requirements in the standards, although the main constitutive relations are based on the experience with steel fibres. Therefore, the structural contributions of the fibres should be assessed by inverse analysis. In this study, the fibre dosage has been fixed at 6kg/m³ and both self-compacting concrete and conventional concrete have been used to compare the influence of the positioning of the fibres. An idealized homogeneous distribution of the fibres with such fibres crossing from side to side of the specimen has been added to self-compacting concrete. The experimental results of three-point bending tests on notched specimens have been reproduced by using the cohesive crack approach. Hence, the constitutive relations were found. The significance of this research relies on the verification of the formulations found to build the constitutive relations. Moreover, with these results it is possible to establish the higher threshold of the performance of PFRC and the difficulties of limiting the first unloading branch typical of fracture tests of PFRC.


Sign in / Sign up

Export Citation Format

Share Document