scholarly journals A method to solve stability problem of nonlinear cylindrical shell under transversal load

1996 ◽  
Vol 18 (4) ◽  
pp. 36-40
Author(s):  
Le Ngoc Hong ◽  
Le Ngoc Thach

The stability problem of the cylindrical shell was studied by many researches, but most of those shells were circular. The present article considers a method to determine the critical load of noncircular cylindrical shell with the open or close section. The author used the small parameter method to obtain the stability equation of the shell. Analyzing quality of the solution, author determines the critical value of the transversal load for a shell with an elliptic close cross section and for an open shell.

2014 ◽  
Vol 608-609 ◽  
pp. 19-22
Author(s):  
Ping Xu ◽  
Jian Gang Yi

Hydraulic descaling system is the key device to ensure the surface quality of billet. However, traditional control methods lead to the stability problem in hydraulic descaling system. To solve the problem, the construction of the hydraulic descaling computer control system is studied, the working principle of the system is analyzed, and the high pressure water bench of hydraulic descaling is designed. Based on it, the corresponding computer control software is developed. The application shows that the designed system is stable in practice, which is helpful for enterprise production.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
A. I. Ismail

The small parameter method was applied for solving many rotational motions of heavy solids, rigid bodies, and gyroscopes for different problems which classify them according to certain initial conditions on moments of inertia and initial angular velocity components. For achieving the small parameter method, the authors have assumed that the initial angular velocity is sufficiently large. In this work, it is assumed that the initial angular velocity is sufficiently small to achieve the large parameter instead of the small one. In this manner, a lot of energy used for making the motion initially is saved. The obtained analytical periodic solutions are represented graphically using a computer program to show the geometric periodicity of the obtained solutions in some interval of time. In the end, the geometric interpretation of the stability of a motion is given.


2016 ◽  
Vol 40 (1) ◽  
pp. 148-154
Author(s):  
Amel BH Adamou-Mitiche ◽  
Lahcène Mitiche

In this paper we present an extension of three important model reduction techniques: namely, the stability equation, the modified pole clustering and the dominant modes methods for conventional (regular) systems to reduce complexity relating to high dimensionality of mathematical models representing physical, generalized (also called singular) systems. Combining these methods to Genetic Algorithms’ tools and exploiting a special representation base where a full order singular system is deflating into proper and improper subsystems, different natures of stable, optimal low order models are obtained. To show the effectiveness of the proposed algorithms, a numerical example is given, where six approximants are derived from a multi-input multi-output singular system. By the use of two optimal norms, the MOR errors are quantified and permits to conclude to the quality of the proposed reduced order models.


1992 ◽  
Vol 14 (4) ◽  
pp. 10-18
Author(s):  
Nguyen Van Khang ◽  
Tran Dinh Son

In this paper the nonlinear parametric resonance of a torsional vibration system with variable generalized masses is investigated. The small parameter method is applied to a weakly nonlinear system in order to find its solutions. The stability of the resonance vibrations is studied by the method of Schmidt.


2001 ◽  
Vol 23 (2) ◽  
pp. 69-86
Author(s):  
Dao Van Dung

The system of stability equations of elasto plastic cylindrical shell made of compressible material was established in work [3]. In the present paper, we study the solution of the problems and methods for determining the critical load. The obtained results describe the influence of the compressibility of material on the stability of the shell. When a material is incompressible, these results red.uce to the previous well-known ones (see [1, 2, 4, 5]).


2019 ◽  
pp. 3-8
Author(s):  
N.Yu. Bobrovskaya ◽  
M.F. Danilov

The criteria of the coordinate measurements quality at pilot-experimental production based on contemporary methods of quality management system and traditional methods of the measurements quality in Metrology are considered. As an additional criterion for quality of measurements, their duration is proposed. Analyzing the problem of assessing the quality of measurements, the authors pay particular attention to the role of technological heredity in the analysis of the sources of uncertainty of coordinate measurements, including not only the process of manufacturing the part, but all stages of the development of design and technological documentation. Along with such criteria as the degree of confidence in the results of measurements; the accuracy, convergence, reproducibility and speed of the results must take into account the correctness of technical specification, and such characteristics of the shape of the geometric elements to be controlled, such as flatness, roundness, cylindrical. It is noted that one of the main methods to reduce the uncertainty of coordinate measurements is to reduce the uncertainty in the initial data and measurement conditions, as well as to increase the stability of the tasks due to the reasonable choice of the basic geometric elements (measuring bases) of the part. A prerequisite for obtaining reliable quality indicators is a quantitative assessment of the conditions and organization of the measurement process. To plan and normalize the time of measurements, the authors propose to use analytical formulas, on the basis of which it is possible to perform quantitative analysis and optimization of quality indicators, including the speed of measurements.


2017 ◽  
Vol 13 (2) ◽  
pp. 4657-4670
Author(s):  
W. S. Amer

This work touches two important cases for the motion of a pendulum called Sub and Ultra-harmonic cases. The small parameter method is used to obtain the approximate analytic periodic solutions of the equation of motion when the pivot point of the pendulum moves in an elliptic path. Moreover, the fourth order Runge-Kutta method is used to investigate the numerical solutions of the considered model. The comparison between both the analytical solution and the numerical ones shows high consistency between them.


Author(s):  
N.A. Jurk ◽  

The article presents scientific research in the field of statistical controllability of the food production process using the example of bakery products for a certain time interval using statistical methods of quality management. During quality control of finished products, defects in bakery products were identified, while the initial data were recorded in the developed form of a checklist for registering defects. It has been established that the most common defect is packaging leakage. For the subsequent statistical assessment of the stability of the production process and further analysis of the causes of the identified defect, a Shewhart control chart (p-card by an alternative feature) was used, which allows you to control the quality of manufactured products by the number of defects detected. Analyzing the control chart, it was concluded that studied process is conditionally stable, and the emerging defects are random. At the last stage of the research, the Ishikawa causal diagram was used, developed using the 6M mnemonic technique, in order to identify the most significant causes that affect the occurrence of the considered defect in bakery products. A more detailed study will allow the enterprise to produce food products that meet the established requirements.


2019 ◽  
Vol 14 (1) ◽  
pp. 52-58 ◽  
Author(s):  
A.D. Nizamova ◽  
V.N. Kireev ◽  
S.F. Urmancheev

The flow of a viscous model fluid in a flat channel with a non-uniform temperature field is considered. The problem of the stability of a thermoviscous fluid is solved on the basis of the derived generalized Orr-Sommerfeld equation by the spectral decomposition method in Chebyshev polynomials. The effect of taking into account the linear and exponential dependences of the fluid viscosity on temperature on the spectral characteristics of the hydrodynamic stability equation for an incompressible fluid in a flat channel with given different wall temperatures is investigated. Analytically obtained profiles of the flow rate of a thermovisible fluid. The spectral pictures of the eigenvalues of the generalized Orr-Sommerfeld equation are constructed. It is shown that the structure of the spectra largely depends on the properties of the liquid, which are determined by the viscosity functional dependence index. It has been established that for small values of the thermoviscosity parameter the spectrum compares the spectrum for isothermal fluid flow, however, as it increases, the number of eigenvalues and their density increase, that is, there are more points at which the problem has a nontrivial solution. The stability of the flow of a thermoviscous fluid depends on the presence of an eigenvalue with a positive imaginary part among the entire set of eigenvalues found with fixed Reynolds number and wavenumber parameters. It is shown that with a fixed Reynolds number and a wave number with an increase in the thermoviscosity parameter, the flow becomes unstable. The spectral characteristics determine the structure of the eigenfunctions and the critical parameters of the flow of a thermally viscous fluid. The eigenfunctions constructed in the subsequent works show the behavior of transverse-velocity perturbations, their possible growth or decay over time.


Sign in / Sign up

Export Citation Format

Share Document