scholarly journals Isolation and characterization of the cellulose-degrading bacteria from Ngoc Linh ginseng soil in Quang Nam province

2016 ◽  
Vol 14 (1) ◽  
pp. 55-61
Author(s):  
Trần Bảo Trâm ◽  
Phạm Hương Sơn ◽  
Ngô Thị Hiền ◽  
Ngô Thị Hoa ◽  
Nguyễn Thu Hiền ◽  
...  

Ngoc Linh ginseng (Panax vietnamensis Ha et Grushv.) is an endemic species in Vietnam and was discovered at the Ngoc Linh mountain (Kon Tum/Quảng Nam). Investigations showed that the soil with a thick layer of humus was the ideal condition for growth and development of Ngoc Linh ginseng. Therefore research on microbial flora as well as cellulose-degrading bacteria in ginseng soil may elucidate factors contributing to acclimatized cultivation of this ginseng in Vietnam. From the soil sample with cultivated Ngoc Linh ginseng in Quang Nam, five bacteria strains with cellulose-degrading activities were isolated (QN1, QN2, QN3, QN4, QN5 with respectively hydrolyzed CMC halos diameters of 10, 11, 22, 7, 22 mm) with cellulase activities of 1,31; 1,23; 2,99; 0,99; 2,51 U/ml. The combination of 16S rRNA gene sequences and cultured/biochemical characteristics of the bacteria showed that the five bacteria strains was classified to be Pseudomonas sp. QN1; Pseudomonas sp. QN4; Bacillus sp. QN2; Bacillus sp. QN3; Roseomonas sp. QN5.

2020 ◽  
Vol 80 (2) ◽  
pp. 354-361 ◽  
Author(s):  
S. D. Lima ◽  
A. F. Oliveira ◽  
R. Golin ◽  
V. C. P. Lopes ◽  
D. S. Caixeta ◽  
...  

Abstract Twenty-three hydrocarbon-degrading bacteria strains were isolated from gas station leaking-contaminated groundwater located in the Southern Amazon, Brazil. Based on hydrocarbon (diesel, hexadecane, benzene, toluene and xylene) degradation ability, two strains were selected for further study. The amplification and sequencing of the 16S rRNA gene showed that these two strains belonged to the genus Bacillus (Bacillus sp. L26 and Bacillus sp. L30). GC-MS analysis showed that strain L30 was the most effective in degrading n-alkane (C10-C27) from diesel after 7 days of cultivation in mineral medium. Both strains produced biosurfactants and showed emulsification activity, specially the strain L30. Alkane hydroxylase gene (group III), which is important for alkane biodegradation, was present in strains. As a result, this study indicated that these bacteria could have promising applications in hydrocarbon bioremediation.


2017 ◽  
Vol 4 (4) ◽  
pp. 436-447 ◽  
Author(s):  
Vikram Pal Gandhi ◽  
Anil Kumar

Microcystins (MCs) are toxic cyclic heptapeptides produced by few toxic cyanobacteria and generally form blooms in eutrophic surface fresh water bodies. They cause acute to chronic poisoning and other health related problems mainly by irreversible inhibition of protein phosphatases (PP1 and PP2A) and increased formation of reactive oxygen species (ROS).  Due to limitation of non-biological methods of water treatments the exploration of MCs degrading bacteria is emerging at a quite pace to address, through bioremediation, the problems posed by MCs in water and water-bodies. Report and study of MCs biodegrading bacteria from India were lacking. However it was evident, from our previous study, that microcystin degradation can be achieved by indigenous microcystin degrading bacterial population in its natural place where microcystin producing blooms occur. This study has presented isolation and characterization of indigenous microcystin degrading bacteria from holy ponds in Utter Pradesh of India. Overall 20 bacterial isolates were isolated from Microcystis infested different ponds. Out of these 13 isolates were mlrA positive by PCR and were found to be distinct isolates by amplified ribosomal DNA restriction analysis (ARDRA). However, ARDRA analysis revealed overall four bacterial groups. On the basis of 16S-rRNA gene sequence the Gram-positive-rod isolate PM1 was identified, with 99% identity, as Bacillus licheniformis which was shown earlier to cluster with microcystin degrading bacterium B. subtilis. Thus the present study revealed, for the first time, probable microcystin degrading bacteria in water-bodies from India. The potential and the metabolic pathway of PM1 and other mlrA positive isolates need to be further studied and validated to confirm their application in microcystin bioremediation. Int J Appl Sci Biotechnol, Vol 4(4): 436-447


2015 ◽  
Vol 4 (1) ◽  
pp. 130-140 ◽  
Author(s):  
Jignasha G. Patel ◽  
J.I. Nirmal Kumar ◽  
Rita N Kumar ◽  
Shamiyan R. Khan

Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were isolated from prolong contaminated Amalakhadi sediment and crude oil polluted soil Telva, near Ankleshwar Gujarat India. Organisms were treated with two-model PAHs compound Anthracene (ANT), and Pyrene (PYR) as the sole source of carbon and energy. Identification of the isolates was carried out based on their morphological and partial 16S rRNA gene sequences, which revealed that the isolates belong to two main bacterial groups: gram-negative pseudomonas indoxyladons and gram-positive, spore-forming group, Bacillus benzoevorans. GC-MS based degradation study demonstrated that P. indoxyladons efficiently degrade 98% of ANT and PYR by 93.2 % when treated with 250 mg L-1. However, B. benzoevorans could tolerate to 200 mg L-1of PYR. Thus, the findings of the study provide novel bacterial sp. having different capacity to degrade model PAHs compounds and further could be utilized for the standardization of bioremediation protocols for ex situ and in situ studies in aquatic as well as terrestrial ecosystem.DOI: http://dx.doi.org/10.3126/ije.v4i1.12184International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15, Page: 130-140  


2012 ◽  
Vol 19 (5) ◽  
pp. 1852-1858 ◽  
Author(s):  
Risky Ayu Kristanti ◽  
Masahiro Kanbe ◽  
Tony Hadibarata ◽  
Tadashi Toyama ◽  
Yasuhiro Tanaka ◽  
...  

2013 ◽  
Vol 6 (11) ◽  
pp. 876-883 ◽  
Author(s):  
MBS Donio ◽  
SFA Ronica ◽  
V Thanga Viji ◽  
S Velmurugan ◽  
J Adlin Jenifer ◽  
...  

2018 ◽  
Vol 78 (7) ◽  
pp. 1517-1524 ◽  
Author(s):  
Riqiang Li ◽  
Jianxing Wang ◽  
Hongjiao Li

Abstract As a step toward bioaugmentation of coking wastewater treatment 45 bacteria strains were isolated from the activated sludge of a coking wastewater treatment plant (WWTP). Three strains identified as Bacillus cereus, Pseudomonas synxantha, and Pseudomonas pseudoaligenes exhibited high dehydrogenase activity which indicates a strong ability to degrade organic matter. Subsequently all three strains showed high naphthalene degradation abilities. Naphthalene is a refractory compound often found in coking wastewater. For B. cereus and P. synxantha the maximum naphthalene removal rates were 60.4% and 79.8%, respectively, at an initial naphthalene concentration of 80 mg/L, temperature of 30 °C, pH of 7, a bacteria concentration of 15% (V/V), and shaking speed of 160 r/min. For P. pseudoaligenes, the maximum naphthalene removal rate was 77.4% under similar conditions but at 35 °C.


Sign in / Sign up

Export Citation Format

Share Document