scholarly journals Study on antifungal activity of silver/bentonite nanomaterials on soybean phytopathogenic fungi

2018 ◽  
Vol 15 (2) ◽  
pp. 349-357
Author(s):  
Nguyễn Hoài Châu ◽  
Nguyễn Thị Thúy ◽  
Đào Trọng Hiền ◽  
Hoàng Thị Mai ◽  
Nguyễn Văn Quang ◽  
...  

In the present study, silver nanoparticles were synthesized by chemical reduction method route into the lamellar space of bentonite (Ag/CTS/Bentonite). Silver nitrate (AgNO3) was taken as a metal precursor, sodium borohydride (NaBH4) as a reducing agent, reduction of Ag+ ions and the subsequent formation of Ag nanoparticles, chitosan as a natural polymeric stabilizer and was sticked silver nanoparticles to the surface of bentonite particles, respectively. Manipulating the size and shape of Ag/CTS/Bentonite nanomaterial was characterized using transmission electron microscopy (TEM), spherical silver nanoparticles, as depicted by TEM, were found to have a wide particle size distribution from 5 nm to 90 nm. Meanwhile, the X-Ray flourescence (XRF) spectrum indicated the presence of silver on bentonite particles. Antifungal activity of the synthesized Ag/CTS/Bentonite nanomaterial was investigated against crop pathogenic fungi (Fusarium oxysporium (F. oxysporium) and Rhizoctonia solani (R. solani)) isolated from infected soybean plant in Bac Ninh province by the Plant Protection Research Institute. The assessment of fungicidal activity of the Ag/CTS/Bentonite nanomaterial showed that this product exhibited strong antifungal activity towards soybean pathogenic fungi. At highest nanosilver concentration of the Ag/CTS/Bentonite nanocomposite (400 ppm) sclerotial germination of F. oxysporum was almost inhibited, after 7 days the inhibition effect on sclerotial germination attained 66.70%. For the case of R. solani, after 2 days at 400 ppm silver nanoparticles concentration the inhibition effect on sclerotial germination attained 92.82%. The obtained results suggested that the synthesized Ag/CTS/Bentonite nanomaterial acts as an effective antifungal agent. Thus, it could be used in developing novel antifungal agents for potential applications in agriculture.

2020 ◽  
Vol 19 (04) ◽  
pp. 1950029
Author(s):  
A. G. Demchenko ◽  
V. S. Sadykova ◽  
A. V. Lyundup ◽  
N. E. Sedyakina ◽  
T. I. Gromovykh ◽  
...  

Silver nanoparticles were synthesized by chemical reduction of silver nitrate using arabinogalactan polysaccharide as a reducing agent and a stabilizer. The average size of nanoparticles, obtained by analyzing TEM-images, was 10.8[Formula: see text]nm; zeta potential [Formula: see text][Formula: see text]mV. A study of the sol by electron diffraction showed that silver in the sample is in metallic form. The resulting preparation of silver nanoparticles showed both antibacterial and antifungal activity. A pronounced antibacterial activity of silver nanoparticles was demonstrated both in relation to conditionally pathogenic gram-positive (Bacillus subtilis and B. coagulans) and gram-negative (Escherichia coli) bacteria. Silver nanoparticles also possess antifungal activity against macromycete Fomitopsis sp., as well as two strains of micromycetes Trichoderma citrinoviride and Fusarium sporotrichioides. Using the methods of light and fluorescence microscopy, MTT-analysis and Real-time cell analysis, the cytotoxic activity of silver nanoparticles was investigated on HepG2 human hepatocellular carcinoma cells. It was demonstrated that nanoparticles cause a suppression of cell metabolic and proliferative activity, as well as dose-dependent induction of cell death (average relative EC[Formula: see text] value was [Formula: see text]g/ml). The preparation of silver nanoparticles stabilized by arabinogalactan can be used in medicine, as a potential antimicrobial and antitumor agent.


2016 ◽  
Vol 51 (9) ◽  
pp. 1306-1313 ◽  
Author(s):  
Jorge G. Fernández ◽  
Martín A. Fernández-Baldo ◽  
Elias Berni ◽  
Gerardo Camí ◽  
Nelson Durán ◽  
...  

2019 ◽  
Vol 15 (3) ◽  
pp. 351-359 ◽  
Author(s):  
Maria E. Fait ◽  
Helen P. S. da Costa ◽  
Cleverson D. T. Freitas ◽  
Laura Bakás ◽  
Susana R. Morcelle

Background:Amino acid based surfactants constitute an important class of surface active biomolecules showing remarkable biocompatible properties. Antimicrobial activity is one of the most remarkable biological properties of this kind of surfactants, which have been widely studied against a broad spectrum of microorganisms. However, the antifungal activity of this kind of compound has been less well investigated. The aim of this work is the study of the antifungal activity of two novel argininebased surfactants (Nα-benzoyl-arginine decylamide, Bz-Arg-NHC10 and Nα-benzoyl-arginine dodecylamide, Bz-Arg-NHC12), obtained by an enzymatic strategy, against phytopathogenic filamentous fungi and dermatophyte strains.Methods:Four phytopathogenic fungi (Fusarium oxysporum, Fusarium solani, Colletotrichum gloeosporioides and Colletotrichum lindemuthianum) and two human pathogenic fungi (dermatophytes Trichophyton rubrum and Trichophyton mentagrophytes) were tested. Inhibition of vegetative growth and conidia germination was investigated for the phytopathogenic fungi. In order to elucidate the possible mechanism of biocide action, membrane integrity, as well as the production of reactive oxygen species (ROS) were evaluated. Additionally, the inhibition of germination of dermatophyte microconidia due to both arginine-based surfactants was studied. Minimum inhibitory concentration, as well as the concentration that inhibits 50% of germination were determined for both compounds and both fungal strains.Results:For the vegetative growth of phytopathogenic fungi, the most potent arginine-based compound was Bz-Arg-NHC10. All the tested compounds interfered with the conidia development of the studied species. Investigation of the possible mechanism of toxicity towards phytopathogenic fungi indicated direct damage of the plasma membrane and production of ROS. For the two strains of dermatophyte fungi tested, all the proved compounds showed similar fungistatic efficacy.Conclusion:: Bz-Arg-NHC10 and Bz-Arg-NHC12 were demonstrated to have broad biocidal ability against the proliferative vegetative form and the asexual reproductive conidia. Results suggest that both membrane permeabilization and induction of oxidative stress are part of the antifungal mechanisms involved in the interruption of normal conidia development by Bz-Arg-NHCn, leading to cell death.


1970 ◽  
Vol 60 (4) ◽  
Author(s):  
Jolanta Pulit ◽  
Marcin Banach ◽  
Renata Szczygłowska ◽  
Mirosław Bryk

The work presents a method of obtaining an aqueous raspberry extract as well as its physicochemical and analytical characteristics. The paper also contains a description of the method of preparation of nanosilver suspensions based on this extract. The raspberry extract served as a source of phenolic compounds which acted as both reducing and stabilizing agents. Suspensions of silver nanoparticles were obtained with the use of chemical reduction method. The silver ions concentration, pH value and temperature of samples incubation were independent variables. The next step of the research was to measure the antifungal activity of the received silver nanoparticles as well as to perform a mycological efficacy resistance analysis of the tested preparations in relation to different concentrations of nanostructured silver. Tests were conducted in compliance with the Eucast guidelines. The results of microbiological study of (the samples') biocidal effect against Cladosporium cladosporoides and Aspergillus niger are described. It was found that using nanosilver suspension at the concentration of 50 ppm inhibited the growth of Cladosporium cladosporoides and Aspergillus niger by 90% and 70%, respectively.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1304 ◽  
Author(s):  
Longzhu Bao ◽  
Shuangshuang Wang ◽  
Di Song ◽  
Jingjing Wang ◽  
Xiufang Cao ◽  
...  

A series of novel 3-aryl-4-hydroxy-2(5H) furanone-acrylate hybrids were designed and synthesized based on the natural butenolides and acrylates scaffolds. The structures of the prepared compounds were characterized by 1H-NMR, 13C-NMR and electrospray ionization mass spectrometry (ESI-MS), and the bioactivity of the target compounds against twelve phytopathogenic fungi was investigated. The preliminary in vitro antifungal activity screening showed that most of the target compounds had moderate inhibition on various pathogenic fungi at the concentration of 100 mg·L−1, and presented broad-spectrum antifungal activities. Further studies also indicated that compounds 7e and 7k still showed some inhibitory activity against Pestallozzia theae, Sclerotinia sclerotiorum and Gibberella zeae on rape plants at lower concentrations, which could be optimized as a secondary lead for further research.


2015 ◽  
Vol 10 (6) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Daniele Fraternale ◽  
Donata Ricci ◽  
Giancarlo Verardo ◽  
Andrea Gorassini ◽  
Vilberto Stocchi ◽  
...  

The in vitro antifungal activity was determined of an ethanolic extract of Vitis vinifera L. tendrils (TVV) against ten plant pathogenic fungi, using the agar dilution method; activity was shown against all tested fungi. Fusarium species were the most sensitive with MIC values ranging from 250 to 300 ppm, while the basidiomycete fungus Rhizoctonia solani was the most resistant, with a MIC value of 500 ppm. Electrospray ionization tandem mass spectrometry (ESI-MSn) was used to obtain qualitative information on the main components of TVV. The high amount of polyphenolic compounds contained in TVV is likely to contribute significantly to its antifungal activity.


2020 ◽  
Author(s):  
Theint Theint Win ◽  
Sikandar Khan ◽  
Pengcheng Fu

Abstract Background: Biogenic nanoparticles have proved to be effective biocontrol agents for certain plant diseases. It possesses the potential for extensive use for sustainable agriculture. Many attempts have been made to synthesize nano-based antifungal compounds for the management of soil borne pathogenic fungi for crops.Results: In our work, silver nanoparticles (AgNPs) was constructed with phytopathogenic fungi (Alternaria sp.) which was isolated from banana cultivated soil. Alternaria sp. was able to grow rapidly and produce highly bioactive compounds as safe antifungal agent against plant pathogenic fungi (Fusarium spp. and Alternaria sp.). The size of synthesized silver nanoparticles ranged between 5-10 nm. Analytic tools, such as UV-visible spectroscopy, Fourier transformed infra-red (FTIR) spectroscopy, scanning transmission electron microscopy (STEM), EDS and elemental mapping were used to visualize the formation of AgNPs. The UV-visible spectra showed the peak at 435 nm. The maximum inhibition zone was observed at 100 µl concentration of AgNPs for Fusarium oxysporum (21 ± 2 mm) following Alternaria sp. (20± 2 mm), suggested that the efficacy of the biosynthesized NPs against the phytopathogenic fungi.Conclusions: The resulting AgNPs showed distinct antifungal activity against selected pathogenic plant fungi. The work indicates that green reduction and biogenic synthesis of nanoparticles with benign fungi is an effective, low cost, sustainable and environmentally friendly approach for prevention of soil borne plant diseases.


2021 ◽  
Vol 10 (20) ◽  
pp. 32-38
Author(s):  
Oana-Alina Boiu-Sicuia ◽  
Vasilica Stan ◽  
Călina Petruța Cornea

Recycling the sewage sludge from treatment plants is a common activity. The resulting compost is usually rich in plant nutrients and beneficial microorganisms. However, compost properties greatly differ depending on the nature of the fermented biomass and fermentation processes. The aim of this study was to analyze the microbial load of three different composts, in order to detect new bacterial strains with plant protection properties. Isolated bacteria were microbiologically characterized and evaluated for their potential to reduce soil-borne phytopathogenic fungi. Results showed a microbial load of approximately 106 CFU/g of compost. In the analyzed samples it was revealed that as bacterial load increases, the fungal amount decreases. Analyzing some newly isolated bacteria obtained from these composts, a good biocontrol potential against soil-borne pathogenic fungi was revealed. Some of the isolated bacterial strains revealed antifungal activity against Rhizoctonia solani and Sclerotinia sclerotiorum. These bacteria showed good colonization capacity and lytic enzymes production, correlated to antimicrobial activity. These compost-originated bacteria reveal high potential in pathogens inhibition. Therefore, the analyzed composts are recommended not only as soil fertility improvers, but also as potential suppressors of soil-borne pathogens. Results revealed these composts as source of plant beneficial bacteria with biological control potential.


Sign in / Sign up

Export Citation Format

Share Document