scholarly journals REMOVAL OF FLOUROQUINOLONE ANTIMICROBIALS (CIPROFLOXACIN AND NORFLOXACIN) FROM SHRIMP POND SEDIMENT DURING COMPOSTING

2018 ◽  
Vol 56 (2C) ◽  
pp. 178-185
Author(s):  
Nguyen Dac Kien

This study aimed to investigate the removal of ciprofloxacin and norfloxacin from shrimp pond sediment during composting process with different antimicrobial concentrations. The results showed that after 40 days of composting, temperature varied from 25 to 55 oC. The highest temperature was on the day 20th. The pH values reduced along with composting time from weak base to neutral. During the composting processes, the removal efficiency of norfloxacin found in the range of 32.5–87.5 % depends on the initial antimicrobials concentrations. For ciprofloxacin, after 20 days of composting, the removal efficiency obtained was around 55 and 45 % and pH was 8.5 and 5.0. Salinity significantly affected ciprofloxacin removal that created remarkably efficiency reduction of ciprofloxacin in salty water as compared to fresh- and brackish water. However, no differences in removal efficiency of norfloxacin were observed between fresh and brackish water. The composted fertilizer was dark brown in color and odorless, contained 15.7-18.8 % C; 2.05 – 2.15 % N; and C/N ratio was 7.5–10.95. This indicated that compost fertilizer was completely decomposed.   

2012 ◽  
Vol 518-523 ◽  
pp. 352-355
Author(s):  
Hui Liu ◽  
Hong Liang Li ◽  
Meng Xue Wang ◽  
Jing Jing Sang ◽  
Xiu Song Zhao

Methylene blue (MB) was used as model molecule to investigate the effects of surface properties and solvent pH values on the adsorption and desorption (or release) behaviors of mesoporous SBA-15 materials. It was found that the treatment of SBA-15 with a pH 7.8 aqueous solution can enhance the adsorption rate and capacity in comparison with the pristine SBA-15. The effect of pH values on MB releasing from the weak base treated SBA-15 and the pristine one have been studied and been compared in pH values range from 0.5 to 7.0. Both of them showed a maximum releasing rate at about pH 2 and all of the treated SBA-15 samples showed a higher releasing quantity than the pristine ones. The influence mechanisms of base treatment on the adsorption ability and that of pH values on the releasing properties of SBA-15 samples have been analyzed and been discussed based on the composition, the morphology, the surface area and pore size distribution and adsorption/desorption measurements.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Juanjuan Liu ◽  
Xiaolong Wu ◽  
Yandi Hu ◽  
Chong Dai ◽  
Qin Peng ◽  
...  

The adsorption of Cr(III) or Cr(VI) in the absence and presence of Cu(II) onto kaolin was investigated under pH 2.0–7.0. Results indicated that the adsorption rate was not necessarily proportional to the adsorption capacity. The solutions’ pH values played a key role in kaolin zeta potential(ζ), especially the hydrolysis behavior and saturation index of heavy metal ions. In the presence of Cu(II),qmixCr(III)reached the maximum adsorption capacity of 0.73 mg·g−1at pH 6.0, while the maximum adsorption capacity for the mixed Cr(VI) and Cu(II) system (qmixCr(VI)) was observed at pH 2.0 (0.38 mg·g−1). Comparing the adsorption behaviors and mechanisms, we found that kaolin prefers to adsorb hydrolyzed products of Cr(III) instead of Cr3+ion, while adsorption sites of kaolin surface were occupied primarily by Cu(II) through surface complexation, leading to Cu(II) inhibited Cr(VI) adsorption. Moreover, Cr(III) and Cr(VI) removal efficiency had a positive correlation with distribution coefficientKd. Cr(III) and Cr(VI) removal efficiency had a positive correlation with distribution coefficientKdand that of adsorption affinities of Cr(III) or Cr(VI) on kaolin was found to beKdCr(III) <KdCr(III)-Cu(II) andKdCr(VI) >KdCr(VI)-Cu(II).


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Mohannad Qurie ◽  
Mustafa Khamis ◽  
Adnan Manassra ◽  
Ibrahim Ayyad ◽  
Shlomo Nir ◽  
...  

Removal of Cr(VI) from aqueous solutions under different conditions was investigated using either clay (montmorillonite) or micelle-clay complex, the last obtained by adsorbing critical micelle concentration of octadecyltrimethylammonium ions onto montmorillonite. Batch experiments showed the effects of contact time, adsorbent dosage, and pH on the removal efficiency of Cr(VI) from aqueous solutions. Langmuir adsorption isotherm fitted the experimental data giving significant results. Filtration experiments using columns filled with micelle-clay complex mixed with sand were performed to assess Cr(VI) removal efficiency under continuous flow at different pH values. The micelle-clay complex used in this study was capable of removing Cr(VI) from aqueous solutions without any prior acidification of the sample. Results demonstrated that the removal effectiveness reached nearly 100% when using optimal conditions for both batch and continuous flow techniques.


2012 ◽  
Vol 260-261 ◽  
pp. 695-700
Author(s):  
J. Srisertpol ◽  
P. Srinakorn ◽  
A. Kheawnak ◽  
K. Chamniprasart

A biogas production development increases renewable energy and reduces the environmental impact which is caused by carbon dioxide. Thisis important for energy and environmental planning in Thailand. The biogas production by anaerobic digestionproduces methane that can be used as renewable energy. This research was to study biogas production from the anaerobic digestion of shrimp pond sediment by the batch reaction, an estimation of the mathematical model using theArtificial Intelligence (AI) technique and the treatment of shrimp pond sediment.The mass balance principle to create mathematical modeling and decompositions of organic matter into biogas were used to compare the experimental dataincluding, temperature, pH, biogas flow rate and biochemical properties of the shrimp pond sediment. From the results, mathematical models can estimate the dynamic response of the biogas flow rate and factors that affectedthe biogas productions. The treatment of shrimp pond sediment by anaerobic digestion process could reduce TS, TDS, TSS, TVS, BOD, COD and ECby81-89%, 52-60%, 95-99%, 80-89%, 86-95% , 85-95% and 12-22 % respectively.


2021 ◽  
Author(s):  
Zhuo Zhang ◽  
Chunyan Du ◽  
Yin Zhang ◽  
Guanlong Yu ◽  
Ying Xiong ◽  
...  

Abstract Photocatalysis/Persulfate is an effective method of degrading organic pollutants. In this study, Fe3O4/MIL-101(Fe), a magnetic heterojunction photocatalyst, was produced by hydrothermal method. The material exhibited excellent removal efficiency for OTC in the coupling of persulfate (87.1%, 1 h). And it has a wide range of applications, with good removal efficiency for OTC concentrations of 30 to 70 mg/L and pH values of 3 to 9. •SO4− and •OH played a major role in the OTC removal reaction and there was an Fe(III)/Fe(II) cycle during the reaction. With excellent stability and recoverability, the OTC removal efficiency decreased by only 4.29% after four cycles, and the Fe leaching did not exceed 0.035 mg/L per cycle. This has a significant implication for the removal of organic pollutants from water bodies.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 557
Author(s):  
Hamdan R ◽  
Siti Zu Nurain Ahmad ◽  
Nur ‘Ain Nazirah Mohd Arshad ◽  
Wan Afnizan Wan Mohamed ◽  
Syahrul Nizam Maarup

Phosphorus in wastewater is one the main culprit which accelerates eutrophication in waterbody if it is not being treated properly. Steel slag filter emerged as one alternative treatment for wastewater. However, the variousness of metal oxides including Fe in steel slag will affect the phosphorus removal efficiency. Thus, this study was conducted to investigate the ability of a series of lab-scale high Fe electric arc furnace (EAF- slag) column filters in removing PO43- from synthetic wastewater. The systems were operated under aerated and unaerated within acidic and alkaline conditions. Synthetic wastewater contained 25 mg/L was prepared as the feed and monitored weekly basis for the PO43- removal efficiency and the total metals (Ca, Fe, and Mg) concentrations in the effluents. The results show that both aerated and unaerated high Fe EAF-slag filter systems have high PO43- removal efficiency under acidic condition, which unaerated system performed slightly better. It can be observed that unaerated systems performed better in removing PO43- at acidic and neutral pH values but not at extremely high pH. As for the PO43- removal mechanism was achieved by adsorption and precipitation at acidic pH and the concentration of Ca, Mg and Fe in effluents was related to the PO43- removal efficiency at different pH values.  


Sign in / Sign up

Export Citation Format

Share Document