Estimation of Biogas Production from Shrimp Pond Sediment Using the Artificial Intelligence

2012 ◽  
Vol 260-261 ◽  
pp. 695-700
Author(s):  
J. Srisertpol ◽  
P. Srinakorn ◽  
A. Kheawnak ◽  
K. Chamniprasart

A biogas production development increases renewable energy and reduces the environmental impact which is caused by carbon dioxide. Thisis important for energy and environmental planning in Thailand. The biogas production by anaerobic digestionproduces methane that can be used as renewable energy. This research was to study biogas production from the anaerobic digestion of shrimp pond sediment by the batch reaction, an estimation of the mathematical model using theArtificial Intelligence (AI) technique and the treatment of shrimp pond sediment.The mass balance principle to create mathematical modeling and decompositions of organic matter into biogas were used to compare the experimental dataincluding, temperature, pH, biogas flow rate and biochemical properties of the shrimp pond sediment. From the results, mathematical models can estimate the dynamic response of the biogas flow rate and factors that affectedthe biogas productions. The treatment of shrimp pond sediment by anaerobic digestion process could reduce TS, TDS, TSS, TVS, BOD, COD and ECby81-89%, 52-60%, 95-99%, 80-89%, 86-95% , 85-95% and 12-22 % respectively.

2021 ◽  
Author(s):  
Júlia Ronzella Ottoni ◽  
Suzan Prado Fernandes Bernal ◽  
Tiago Joelzer Marteres ◽  
Franciele Natividade Luiz ◽  
Viviane Piccin dos Santos ◽  
...  

Abstract The search for sustainable development has led countries around the world to seek the improvement of technologies that use renewable energy sources. One of the alternatives in the production of renewable energy comes from the use of waste including urban solids, animal excrement from livestock and biomass residues from agro-industrial plants. These materials may be used in the production of biogas, making its production highly sustainable and environmentally friendly, in addition to reducing public expenses for the treatment of those wastes. The present study evaluated the cultivated and uncultivated microbial community from a substrate (starter) used as an adapter for biogas production in anaerobic digestion processes. 16S rDNA metabarcoding revealed domain of bacteria belonging to the phyla Firmicutes, Bacteroidota, Chloroflexi and Synergistota. The methanogenic group was represented by the phyla Halobacterota and Euryarchaeota. Through 16S rRNA sequencing analysis of isolates recovered from the starter culture, the genera Rhodococcus, Vagococcus, Lysinibacillus, Niallia, Priestia, Robertmurraya, Luteimonas and Proteiniclasticum were recovered, groups that were not observed in the metabarcoding data. The groups mentioned are involved in the metabolism pathways of sugars and other compounds derived from lignocellulosic material, as well as in anaerobic methane production processes. The results demonstrate that culture-dependent approaches, such as isolation and sequencing of isolates, as well as culture-independent studies, such as the Metabarcoding approach, are complementary methodologies that, when integrated, provide robust and comprehensive information about the microbial communities involved in various processes, including the production of biogas in anaerobic digestion processes.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3413
Author(s):  
Adele Folino ◽  
Paolo Salvatore Calabrò ◽  
Demetrio Antonio Zema

In order to overcome anaerobic digestion (AD) inhibition due to the large nitrogen content of swine wastewater (SW), air stripping (AS) and other chemical and physical pretreatments were applied on raw SW before AD. The efficiency of these pretreatments on both ammonia removal—recovering ammonia salts to be used as fertilizers in agriculture—and the increase of methane production were assessed in batch tests. Since the pH, temperature, and air flow rate heavily influence AS efficiency and the composition of treated SW, these parameters were set individually or in combination. In more detail, the pH was increased from the natural value of SW to 8 or 10, temperature was increased from the room value to 40 °C, and the air flow rate was increased from zero to 5 Lair LSW−1 min−1. AS was generally more efficient at removing ammonia (up to 97%) from raw (non-treated) SW compared to the other treatments. However, the tested pretreatments were not as efficient as expected in increasing the biogas production, because the methane yields of all pretreated substrates were lower (by about 10–50%) to compared raw SW. The inhibitory effect on AD could have been due to the lack of nutrients and organic matter in the substrate (due to the excessive removal of the pretreatments), the concentration of toxic compounds (such as metal ions or furfural due to water evaporation), and an excess of alkali ions (used to increase the pH in AS). Overall, AS can be considered a sustainable process for the recovery of ammonium sulphate and the removal of other polluting compounds (e.g., organic matter) from SW. Conversely, the use of AS and other chemical and/or thermal processes tested in this study as pretreatments of SW before AD is not advised because these processes appear to reduce methane yields.


Author(s):  
Kumar Gaurav

A major share of world’s primary energy requirement is dependent on fossil fuels which is not only a non renewable source of energy and on the verge of extinction but also associated with serious environmental concerns. To combat these issues, alternative renewable energy sources are required. Certain examples of renewable energy sources are solar energy, wind energy, hydro and thermal energy, biofuels etc. Biomass is one such alternative which is freely and abundantly available. It is mainly the agricultural waste and vegetable waste which are perishable and create a lot of nuisance. Tapping this biomass for energy production will be beneficial in two ways; it will be an excellent source of energy generation and it will also help in waste management for environment protection. Energy generation from Biomass can take place either chemically or thermo-chemically. In the present paper advantages of anaerobic digestion of biomass are discussed for biogas production.


2020 ◽  
pp. 0958305X2092311 ◽  
Author(s):  
KeChrist Obileke ◽  
Nwabunwanne Nwokolo ◽  
Golden Makaka ◽  
Patrick Mukumba ◽  
Helen Onyeaka

The authors reviewed the future prospects and previous studies on anaerobic digestion technology for biogas production and highlight the solutions to problems relating to construction and maintenance of biogas digesters, which can now be accessed in a single paper. It is the aim of the review to provide insight into the use, process and application of anaerobic digestion as an appropriate technology for biogas production from peer reviewed literature. Recent studies have shown that the microbial communities and metabolic pathways involves in anaerobic digestion are influenced by temperature. Their metabolic activities increase significantly with increase in temperature. Therefore, the findings of the review reveal that temperature is a major parameter for biogas production due to its influence on metabolic activities involved in anaerobic digestion. Hence, there is the need for insulation as well as external heating to maintain temperature stability and to avoid temperature fluctuations. More also, the anaerobic digestion technology for production of biogas is a viable option that can supplement as well as reduce the usage of non-renewable energy sources such as fossil fuel. The detailed information addressed in this study would increase biogas energy mix as well as mitigating climate change. Therefore, the study recommends the use of biogas as a clean energy for the purpose of power generation, cooking and heating.


2017 ◽  
Vol 33 (3) ◽  
Author(s):  
Abimbola M. Enitan ◽  
Josiah Adeyemo ◽  
Feroz M. Swalaha ◽  
Sheena Kumari ◽  
Faizal Bux

AbstractAnaerobic digestion (AD) technology has become popular and is widely used due to its ability to produce renewable energy from wastes. The bioenergy produced in anaerobic digesters could be directly used as fuel, thereby reducing the release of biogas to the atmosphere. Due to the limited knowledge on the different process disturbances and microbial composition that are vital for the efficient operation of AD systems, models and control strategies with respect to external influences are needed without wasting time and resources. Different simple and complex mechanistic and data-driven modeling approaches have been developed to describe the processes taking place in the AD system. Microbial activities have been incorporated in some of these models to serve as a predictive tool in biological processes. The flexibility and power of computational intelligence of evolutionary algorithms (EAs) as direct search algorithms to solve multiobjective problems and generate Pareto-optimal solutions have also been exploited. Thus, this paper reviews state-of-the-art models based on the computational optimization methods for renewable and sustainable energy optimization. This paper discusses the different types of model approaches to enhance AD processes for bioenergy generation. The optimization and control strategies using EAs for advanced reactor performance and biogas production are highlighted. This information would be of interest to a dynamic group of researchers, including microbiologists and process engineers, thereby offering the latest research advances and importance of AD technology in the production of renewable energy.


2015 ◽  
Vol 13 ◽  
pp. 185-193 ◽  
Author(s):  
Gheorghe Voicu ◽  
Mirela Dincă ◽  
Gigel Paraschiv ◽  
Georgiana Moiceanu

Globally, the pollution prevention goals transposed in the Kyoto Protocol, require sustainable solutions regarding the management of organic waste from both agricultural, and livestock farms. Biogas production by anaerobic digestion of organic wastes and residues provides a range of socio-economic benefits, but also environmental, thus contributing to monitoring the complex relationship between human health and the environment. The European Union policies regarding renewable energy systems (Europe 2020 Strategy – A strategy for smart, sustainable and inclusive growth and Green Paper „Towards a European strategy for the security of energy supply“), highlights that the production of renewable energy, reducing greenhouse gas emissions and a sustainable waste management, are essential for sustainable development in the future. In this context, this paper will review aspects of biogas production by anaerobic digestion of organic waste, stages of anaerobic digestion process and concepts of biogas plants used in European countries.


Sign in / Sign up

Export Citation Format

Share Document