scholarly journals ADSORPTION OF MERCURIC ION FROM AQUEOUS SOLUTIONS USING MODIFIED FLY ASH

2018 ◽  
Vol 56 (6) ◽  
pp. 688 ◽  
Author(s):  
Nguyen Thuy Chinh ◽  
Hoang Thai ◽  
Trang Do Mai Tran ◽  
Tuyet Thi Nguyen ◽  
Oanh Nhat Nguyen ◽  
...  

In this study, fly ash was treated with NaOH solution (FAN) before modifying with (3-mercaptopropyl) triethoxysilane - MPTMS (FAMPS). By using FTIR, FESEM, XRD, EDX, and BET techniques, the change in structure, composition and morphology of FAN and FAMPS was evaluated. The FTIR spectra of FAN and FAMPS showed that there is no chemical reaction between the MPTMS and FAN. After modification, the FAMPS has a rough surface with composition difference from the FAN. Mercuric ion adsorption behavior as well as adsorptionisotherm models (Langmuir and Freundlich) of the FAN and FAMPS were also investigated and discussed. Thanks to FAN modification, the mercuric ion removal percent of the FAMPS was higher than that of the FAN. Owing to the adsorption data, Freundlich isotherm modelwas fitted for the mercuric ion adsorption process.

2008 ◽  
Vol 569 ◽  
pp. 217-220 ◽  
Author(s):  
Xue Gang Luo ◽  
Feng Liu ◽  
Xiao Yan Lin ◽  
Jian Zhou

A new Gelatin-glutaradehyde-Poly(vinyl alcohol) bioadsorbent was synthesized by immobilizing Poly(vinyl alcohol) onto gelatin followed by cross-linking. This technique gives the bioadsorbent of gelatin good chemical resistance and mechanical strength. SEM and FT-IR were conducted for characterization of the bioadsrobent. A comprehensive adsorption study of Copper(II) removal from synthetic aqueous solution by adsorption on this bioadsorbent was conducted regarding the effects of initial pH, time, and copper(II) initial concentration. The adsorption data were applied to Freundlich isotherm equation and its contents were calculated. The results obtained showed that the new absorbent has good performance for the removal of copper(II).


2011 ◽  
Vol 287-290 ◽  
pp. 1653-1658 ◽  
Author(s):  
You Ya Zhou ◽  
Zeng Guang Yan ◽  
Kinam Kim

The adsorption of p,p’-DDT onto expanded graphite (EG) in aqueous solutions was investigated under varying conditions of p,p’-DDT concentrations, adsorbent doses, pH, and contact time. The removal efficiency of p,p’-DDT from the aqueous solutions remained constant in a range of pH 2 to 10, and the thermodynamic data followed the type II adsorption isotherm characterized by a spontaneous process. At lower concentrations, adsorption equilibrium of p,p’-DDT onto EG was fitted to Freundlich isotherm. Dynamic modeling of the adsorption showed that the first order reversible kinetic model was held for the adsorption process within the range of experimental concentration. It was suggested that expanded graphite can be used for efficient removal of p,p’-DDT from water and wastewater.


2014 ◽  
Vol 878 ◽  
pp. 226-233
Author(s):  
Yu Xin Sun ◽  
Jin Zhang

Removal of phenols from waters and wastewaters is an important issue in order to protect public health and environment. In an effort to develop an effective adsorbent for removal of phenol from aqueous solutions, fly ash cenospheres (FACs), the solid wastes generated from a coal-firing power plant, were modified with an amino-terminated organosilicon (γ-aminopropyltriethoxysilane, KH550). Surface properties of the KH550-modified FACs (M-FACs) were characterized by the X-ray diffraction (XRD), the scanning electron microscopy (SEM) and X-ray photoelectron spectra (XPS). The characterized results showed that KH550 was successfully grated on the surface of FACs. The effects of various experimental parameters such as solution pH, adsorbent dose, and temperature upon the phenol adsorption onto M-FACs were evaluated. The results showed solution pH had a major impact on the phenol adsorption onto M-FACs, the optimum phenol removal was observed around pH 7-9. The kinetic studies indicated that the adsorption process was best described by the pseudo-second-order kinetics, suggesting that the mainly phenol adsorption process was predominantly controlled by chemical process. M-FACs presented more than double adsorptive capacity as compared with FACs. The adsorption capacity of the regenerated adsorbents could still be maintained at 83% by the fourth adsorption-desorption cycle.


2017 ◽  
Vol 57 (2) ◽  
Author(s):  
Guillermina Burillo ◽  
Juan Serrano-Gómez ◽  
Juan Bonifacio-Martínez

Polypropylene (PP) grafted with dimethylaminoethylmethacrylate (DMAEMA), was prepared by irradiation with a <sup>60</sup>Co γ source. The obtained PP-<em>g</em>-DMAEMA was used to study the Cr(VI) ion adsorption as a function of contact time, initial pH, initial concentration of metal ion and temperature. Chromium adsorption data on PP-<em>g</em>-DMAEMA at various initial concentration fit well the Freundlich and Langmuir isotherms. The maximum adsorption capacity (a<sub>max</sub>) was found to be 0.3103 × 0<sup>-4</sup> mol g<sup>-1</sup>. The thermodynamic parameters ΔH<sup>0</sup>, ΔG<sup>0</sup> and ΔS<sup>0</sup> were estimated showing the adsorption process to be exothermic and spontaneous.


2021 ◽  
Vol 10 (2) ◽  
pp. 70-76
Author(s):  
Fatimah ◽  
Siti Hardianti ◽  
Stephen Octaviannus

The purpose of this study was to determine the response and performance of fly ash as an adsorbent activated by HCl and impregnated with FeCl3 to absorb phenol. In this study, the fly ash activation process was carried out using 8 M HCl for 2 hours and impregnated with 2% FeCl3 for 2 hours. Activated and impregnated fly ash was analyzed using a Scanning Electron Microscope-Energy Dispersive Spectrophotometer (SEM-EDX). The results of the activated and impregnated fly ash surface using SEM-EDX showed that there were changes in morphology and functional groups. Then activated and impregnated fly ash was used to absorb phenol at a time variation of 60 minutes, 120 minutes, 180 minutes, 240 minutes and 300 minutes. At 180 minutes of contact time, the equilibrium point is obtained with an absorption efficiency of 90.5%. Second-order pseudo kinetics were used for phenol adsorption by Fe+ impregnated fly ash (R2 = 0.9916). The isotherm models used in the phenol adsorption process by fly ash impregnated with Fe+ are Langmuir Isotherm (R2 = 0.9927) and Freundlich Isotherm (R2 = 0.9984), which means that the adsorption process occurs in multi-layer and mono-layers.


1993 ◽  
Vol 28 (2) ◽  
pp. 369-384 ◽  
Author(s):  
T. Viraraghavan ◽  
Murali M. Dronamraju

Abstract The effectiveness of fly ash in adsorbing copper, nickel and zinc was studied by conducting batch kinetic and isotherm studies. The effect of contact time, pH, initial concentration of the adsorbate, and temperature on the adsorption process was studied. Fly ash was found to be an effective adsorbent. The contact time necessary to attain equilibrium was found to be two hours. Maximum adsorption occurred in the pH range of 3.0 to 3.5. The Langmuir and Freundlich models were found to be applicable to the adsorption data of copper, nickel and zinc. Thermodynamic parameters suggested the exothermic nature of the adsorption process.


2013 ◽  
Vol 456 ◽  
pp. 559-563 ◽  
Author(s):  
Yan Li ◽  
Ping Sun

To study the removal capacity of modified fly ash in wastewater containing mercury ions under different conditions, the carbide slag was added to fly ash, and the pyrogenic process was employed to modify the fly ash. The result indicated that the wastewater had a pH value of 11, the modified fly ash dosage was 2.0 g, the adsorption equilibrium time was 40 minutes, the reaction temperature was 30 °C, the removal rate could reach 97.1%, and the Freundlich-type adsorption isotherm can be used to simulate the adsorption process effectively. The modified fly ash can be used in the removal of mercury-containing wastewater, the overall result of the experiment is satisfactory, which indicates that the modified fly ash has potential value for practical application.


2013 ◽  
Vol 726-731 ◽  
pp. 1827-1832
Author(s):  
Hong Mei Deng ◽  
Yong Heng Chen ◽  
Cui Qin Wu ◽  
Xue Xia Huang ◽  
Tao Liu

Fir sawdust, a low-cost residual agricultural material, was used as adsorbent for the removal of Cu2+from aqueous solutions. Factors affecting the adsorption behavior of Cu2+, such as pH, initial metal concentration, contact time and temperature, have been carried out. The Cu2+removal was pH-dependent, reaching a maximum at pH 5. The adsorption capacity of the fir sawdust from Langmuir adsorption isotherm was 38.6 mg/g at 25°C. The adsorption process followed pseudo-second-order kinetics. The equilibrium data fitted very well to the Freundlich isotherm. The negative ΔGovalues at various temperatures confirm that the adsorption processes are spontaneous.


2019 ◽  
Vol 79 (10) ◽  
pp. 1922-1933 ◽  
Author(s):  
Hee-Jeong Choi

Abstract Hybrid adsorbents (ES) were prepared with mixing of eggshell and sericite as binders, and Pb(II) was removed from aqueous solutions. Sericite has the advantage of not only serving as a binder for hybrid adsorbent but also having a negative charge on the surface to improve the removal efficiency of heavy metals. Various parameters affecting the removal of Pb(II) from aqueous solutions were investigated using the optimal conditions derived. In addition, adsorption kinetics, adsorption isotherms and thermodynamic analyses were performed using the experimental results of each parameter. The ES had a more specific surface area and porosity than sericite or eggshell and contained a large number of OH groups favoring heavy metal adsorption. As a result of the adsorption of Pb(II) using the ES, the adsorption process was physical and suitable for the Freundlich isotherm. In addition, the adsorption process of Pb(II) by the ES was a spontaneous endothermic reaction. The ES can quickly reach the adsorption equilibrium and strong adsorption strength. In addition, the CaOH contained in the ES can neutralize the pH of wastewater, and it is possible to treat heavy metal ions in industrial wastewater and acid mine wastewater without controlling the pH. ES adsorbents using waste eggshells are very economic because they recycle what would otherwise be waste and have great significance in terms of resource reuse.


Sign in / Sign up

Export Citation Format

Share Document