Assessment of the adsorption kinetics, equilibrium and thermodynamic for Pb(II) removal using a hybrid adsorbent, eggshell and sericite, in aqueous solution

2019 ◽  
Vol 79 (10) ◽  
pp. 1922-1933 ◽  
Author(s):  
Hee-Jeong Choi

Abstract Hybrid adsorbents (ES) were prepared with mixing of eggshell and sericite as binders, and Pb(II) was removed from aqueous solutions. Sericite has the advantage of not only serving as a binder for hybrid adsorbent but also having a negative charge on the surface to improve the removal efficiency of heavy metals. Various parameters affecting the removal of Pb(II) from aqueous solutions were investigated using the optimal conditions derived. In addition, adsorption kinetics, adsorption isotherms and thermodynamic analyses were performed using the experimental results of each parameter. The ES had a more specific surface area and porosity than sericite or eggshell and contained a large number of OH groups favoring heavy metal adsorption. As a result of the adsorption of Pb(II) using the ES, the adsorption process was physical and suitable for the Freundlich isotherm. In addition, the adsorption process of Pb(II) by the ES was a spontaneous endothermic reaction. The ES can quickly reach the adsorption equilibrium and strong adsorption strength. In addition, the CaOH contained in the ES can neutralize the pH of wastewater, and it is possible to treat heavy metal ions in industrial wastewater and acid mine wastewater without controlling the pH. ES adsorbents using waste eggshells are very economic because they recycle what would otherwise be waste and have great significance in terms of resource reuse.

2006 ◽  
pp. 83-87 ◽  
Author(s):  
Blagica Cekova ◽  
Dragi Kocev ◽  
Elena Kolcakovska ◽  
Daniela Stojanova

The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.


Author(s):  
Jurgita Seniūnaitė ◽  
Rasa Vaiškūnaitė ◽  
Kristina Bazienė

Research studies on the adsorption kinetics are conducted in order to determine the absorption time of heavy metals on coffee grounds from liquid. The models of adsorption kinetics and adsorption diffusion are based on mathe-matical models (Cho et al. 2005). The adsorption kinetics can provide information on the mechanisms occurring be-tween adsorbates and adsorbents and give an understanding of the adsorption process. In the mathematical modelling of processes, Lagergren’s pseudo-first- and pseudo-second-order kinetics and the intra-particle diffusion models are usually applied. The mathematical modelling has shown that the kinetics of the adsorption process of heavy metals (copper (Cu) and lead (Pb)) is more appropriately described by the Lagergren’s pseudo-second-order kinetic model. The kinetic constants (k2Cu = 0.117; k2Pb = 0,037 min−1) and the sorption process speed (k2qeCu = 0.0058–0.4975; k2qePb = 0.021–0.1661 mg/g per min) were calculated. After completing the mathematical modelling it was calculated that the Langmuir isotherm better reflects the sorption processes of copper (Cu) (R2 = 0.950), whilst the Freundlich isotherm – the sorption processes of lead (Pb) (R2 = 0.925). The difference between the mathematically modelled and experimen-tally obtained sorption capacities for removal of heavy metals on coffee grounds from aqueous solutions is 0.059–0.164 mg/l for copper and 0.004–0.285 mg/l for lead. Residual concentrations of metals in a solution showed difference of 1.01 and 0.96 mg/l, respectively.


2013 ◽  
Vol 726-731 ◽  
pp. 2380-2383
Author(s):  
Li Xia Li ◽  
Xin Dong Zhai

Modified bentonite was used as adsorbent for the methylene blue adsorption in a batch process. Experimental results show that the adsorption kinetics is well described by pseudo-second-order model and the equilibrium data was better represented by the Freundlich isotherm model. The results revealed that the modified bentonite has the potential to be used as a good adsorbent for the removal of methylene blue from aqueous solutions.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Md. Sayedur Rahman ◽  
Kathiresan V. Sathasivam

Biosorption process is a promising technology for the removal of heavy metals from industrial wastes and effluents using low-cost and effective biosorbents. In the present study, adsorption of Pb2+, Cu2+, Fe2+, and Zn2+onto dried biomass of red seaweedKappaphycussp. was investigated as a function of pH, contact time, initial metal ion concentration, and temperature. The experimental data were evaluated by four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) and four kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models). The adsorption process was feasible, spontaneous, and endothermic in nature. Functional groups in the biomass involved in metal adsorption process were revealed as carboxylic and sulfonic acids and sulfonate by Fourier transform infrared analysis. A total of nine error functions were applied to validate the models. We strongly suggest the analysis of error functions for validating adsorption isotherm and kinetic models using linear methods. The present work shows that the red seaweedKappaphycussp. can be used as a potentially low-cost biosorbent for the removal of heavy metal ions from aqueous solutions. Further study is warranted to evaluate its feasibility for the removal of heavy metals from the real environment.


2018 ◽  
Vol 36 (1) ◽  
pp. 182
Author(s):  
A. Bourliva ◽  
K. Michailidis ◽  
C. Sikalidis ◽  
G. Trontsios

The lead and zinc removal from their aqueous solutions by vermiculite samples from Askos area, Northern Greece, was studied using a batch type method. Askos vermiculite is mainly consisted of mixed-layer phyllosilicates. A standard vermiculite sample from Kent, Connecticut was also used for comparison reasons. The concentration of the solutions used varied between 100 and 2000mg/L The maximum uptake capacity of the Askos vermiculite for lead and zinc was found to reach 95% and 96% from solutions containing 100mg/L, respectively. Much lower uptake capacities: 37% for lead and 76% for zinc were found for the Kent vermiculite. The experimental results showed that the Askos vermiculite exhibited an acceptable high capacity for removing metal ions from aqueous solutions. Thus, this untreated and low-cost mineral can find use in purifying heavy metal wastewaters. The uptake distribution coefficient (Kd) showed that the relative lead and zinc removal is higher for initial concentrations below 1000mg/L Batch adsorption experiments conducted at room temperature (22±1°C) showed that the adsorption patterns followed the Freundlich isotherm model. The heavy metal (Pb2+, Zn2+) removal is a rather complicated phenomenon related both to the aqueous chemistry of the elements and the interaction of their cationic species with the used materials. The removal procedure can be attributed to different processes such as ion exchange, adsorption, and precipitation.


2012 ◽  
Vol 12 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Susy Yunita Prabawati ◽  
Jumina Jumina ◽  
Sri Juari Santosa ◽  
Mustofa Mustofa ◽  
Keisuke Ohto

A research has been conducted to investigate the capability of a series of novel calix[6]arenes-based polymers: poly-monoallyloxycalix[6]arene (2a), poly-monoallyloxypenta-estercalix[6]arene (2b) and poly-monoallyloxypenta-acidcalix[6]arene (2c) for trapping of heavy metal cations such as Cd(II), Cu(II) and Cr(III). The existence of active hydroxy group (-OH) and with a tunnel-like structure of the polymers, caused the polymers can be used as adsorbents for heavy metals. The adsorption process was carried out in batch method in the variation of acidity (pH), contact time and initial concentration of metal ions. The results showed that the amount of adsorbed metal increased with the increasing of the pH of metal solution. For these three polymers, the amount of metal ions Cd(II), Cu(II) and Cr(III) adsorbed was optimum at pH 7, 6 and 5 respectively. The optimum contact time for Cd(II) and Cu(II) was 120 min, while that for Cr(III) was 60 min. Study of the adsorption kinetics showed that the adsorption of Cd(II), Cu(II) and Cr(III) using polymer 2a followed kinetics model of Ho. For adsorbent 2b and 2c, the adsorption kinetics of Cd(II) and Cr(III) also followed kinetics model of Ho while for the Cu(II) followed Lagergren kinetic models. Isothermal studies showed that the adsorption of metal ions on all adsorbents tend to follow the Langmuir isotherm. The adsorption energies of the three adsorbents were higher than 23 kJ/mole and polymer 2c has the largest adsorption capacity for Cr(III).


Environments ◽  
2019 ◽  
Vol 6 (6) ◽  
pp. 68
Author(s):  
Mohamed Ould M’hamed ◽  
Lotfi Khezami

The aim of this work was to evaluate the performance of a 1,2,3,4-tetrahydropyrimidine derivative as a powerful heterocyclic compound for the elimination of Cd(II) ions from aqueous solutions. The tetrahydropyrimidine derivative was prepared during 30 min of milling by planetary ball mill with a ball-to-powder mass ratio of 8:1 and a rotation speed of 750 rpm. Nuclear magnetic resonance (NMR) and infrared (IR) were used to identify the obtained tetrahydropyrimidine derivatives. Furthermore, batches of experiments were carried out to establish the adsorption equilibrium, kinetics, and thermodynamic variables of the tetrahydropyrimidine derivatives for toxic heavy Cd(II) ions. The adsorption data were simulated by applying the Langmuir manner, the Freundlich equation, the pseudo-first-order and pseudo-second-order equations. The adsorption procedure was discovered to be very influenced by PH. The removal of heavy metal ions reached a maximum value quickly within 6 min and the adsorption data better adjusted the Langmuir isotherm than that of the Freundlich isotherm. The maximum Cd(II) ions adsorption capacity was approximated to be 151.16 mg g−1 at 328 K and a pH of 6 to 7. It was found that the adsorption kinetics of Cd(II) ions obeyed pseudo-second-order adsorption kinetics. The examination of the thermodynamic variables of tetrahydropyrimidine derivative showed a spontaneous endothermic adsorption procedure. Otherwise, positive entropy values put forward a rise in the randomness at the solid-solution interface when heavy metal ions are adsorbed.


2011 ◽  
Vol 287-290 ◽  
pp. 1653-1658 ◽  
Author(s):  
You Ya Zhou ◽  
Zeng Guang Yan ◽  
Kinam Kim

The adsorption of p,p’-DDT onto expanded graphite (EG) in aqueous solutions was investigated under varying conditions of p,p’-DDT concentrations, adsorbent doses, pH, and contact time. The removal efficiency of p,p’-DDT from the aqueous solutions remained constant in a range of pH 2 to 10, and the thermodynamic data followed the type II adsorption isotherm characterized by a spontaneous process. At lower concentrations, adsorption equilibrium of p,p’-DDT onto EG was fitted to Freundlich isotherm. Dynamic modeling of the adsorption showed that the first order reversible kinetic model was held for the adsorption process within the range of experimental concentration. It was suggested that expanded graphite can be used for efficient removal of p,p’-DDT from water and wastewater.


2011 ◽  
Vol 356-360 ◽  
pp. 1488-1494
Author(s):  
Dong Rui Yao ◽  
Wen Bin Chen

The Leptospirillum ferrooxidans which had been selected and cultivated from mine area was applied in treatment of Cr(VI) -containing waste water in the laboratory and real Cr(VI) -containing waste water. The principle of its adsorption process was probed. The results show that the main factors which affect the lead uptake are pH value、ways of pretreatment、contacting time、co-existing ions、Leptospirillum ferrooxidans concentration insolutions,etc.It was able to adsorb Cr(VI) efficiently.After adsorption steps of the treatment, the concentration of heavy metal Cr(VI) in solution met the standard for treating waste water. After adsorption treatment of containing chromium mine wastewater, the concentration of chromium ions reaches the first class of irrigation water quality standards.


Sign in / Sign up

Export Citation Format

Share Document