scholarly journals THE ANALYSIS OF FLUID DYNAMICS OF WAVE POWER STATION WITH WELLS TURBIN BY CFD

2020 ◽  
Vol 57 (6A) ◽  
pp. 1
Author(s):  
Thien Tich TRUONG ◽  
Sang Quang Nguyen ◽  
Bang Kim Tran

Natural energy such as wind, wave and other natural vibrations is one of the high potential renewable energy sources. The Wells turbine is based on the use of bidirectional turbines, which act as axial-flow self-rectifying turbines that employs a symmetrical blade profile and rotating unidirectionally in reciprocating airflows generated by the air chamber to extract energy from vibrations. These topics have been extensively studied both numerically and experimentally such as research on the parameters of the effects of structure, angle of attack, blade shape, etc. In this paper, numerical simulation is carried out using commercially available tool Fluent for fluid dynamics analysis and focus on oscillating predictions, with particular attention to the behavior of the flow. Based on the Numerical Wave Tank (NWT) model is simulated in a two dimensional used in this model, which is constructed mainly based on the spatially averaged Navier Stokes equation with the k-ε model for simulating the turbulence and modeled with Volume of Fluid (VOF). Axial-flow turbines system and future development as well as the proposed limitations will be discussed in detail.

2020 ◽  
Vol 57 (6A) ◽  
pp. 1
Author(s):  
Truong Tich Thien ◽  
Sang Quang Nguyen ◽  
Bang Kim Tran

Natural energy such as wind, wave and other natural vibrations is one of the high potential renewable energy sources. The Wells turbine is based on the use of bidirectional turbines, which act as axial-flow self-rectifying turbines that employs a symmetrical blade profile and rotating unidirectionally in reciprocating airflows generated by the air chamber to extract energy from vibrations. These topics have been extensively studied both numerically and experimentally such as research on the parameters of the effects of structure, angle of attack, blade shape, etc. In this paper, numerical simulation is carried out using commercially available tool Fluent for fluid dynamics analysis and focus on oscillating predictions, with particular attention to the behavior of the flow. Based on the Numerical Wave Tank (NWT) model is simulated in a two dimensional used in this model, which is constructed mainly based on the spatially averaged Navier Stokes equation with the k-ε model for simulating the turbulence and modeled with Volume of Fluid (VOF). Axial-flow turbines system and future development as well as the proposed limitations will be discussed in detail.


Author(s):  
Ian Torotwa ◽  
Changying Ji

In this study, turbulent flow fields in a baffled vessel stirred by counter-axial flow impeller have been investigated in comparison to the Rushton turbine. The resultant turbulence was numerically predicted using computational fluid dynamics (CFD). Turbulence models were developed in ANSYS Fluent 18.1 solver using the Navier-Stokes equation with the standard k-ε turbulence model. The Multiple Reference Frame (MRF) approach was used to simulate the impeller action in the vertical and horizontal planes of the stirred fluid volume. Velocity profiles generated from the simulations were used to predict and compare the performance of the two designs. To validate the CFD model, the simulation results were compared with experimental results from existing work and a satisfactory agreement was established. It was concluded that the counter-axial flow impeller could provide better turbulence characteristics that would improve the quality of mixing systems.


2014 ◽  
Vol 592-594 ◽  
pp. 1930-1934
Author(s):  
G.V.R. Seshagiri Rao ◽  
V.V. Subbarao ◽  
C. Prabakara Rao

Abstract. This paper presents the results of experimental studies of the noise of marine application pump axial flow fan. Axial flow fan is verified by both geometrical and experimental approaches. This section includes grid system used in geometric simulation, and boundary conditions. In order to know the complicate and complex physical features of an axial flow fan, a commercial computational fluid dynamics code, FLUENT, is utilized to perform the flow field analysis, which solves the Navier–Stokes equation using an amorphous finite volume-method. As a commercial computational fluid dynamics code, FLUENT has been extensively used in many turbo machinery applications. In this paper the noise predicted according to geometrical results will be compare with investigational results.


2018 ◽  
Vol 172 ◽  
pp. 06002
Author(s):  
P.Madhan Kumar ◽  
Abdus Samad

To fulfill the ever growing demands of world energy consumption, the wave energy should be extracted economically. The oscillating water column is most commonly used to xtract energy from waves. It consists of a chamber in which waves drives the entrapped air column to rotate the Wells turbine. The Wells turbine is a self-rectifying low-pressure axial reaction turbine with 90ο stagger angle. These turbines consist of symmetrical airfoil profile to achieve unidirectional rotation for the bi-directional airflow. The turbine performance predominantly depends on the aerodynamic characteristics of the airfoil profile used. In this study, the performance of Wells turbine with various symmetrical airfoil profiles was analysed using ANSYS CFX 14.5. The CFD analysis was performed by solving three dimensional steady Reynolds averaged Navier-Stokes equation with k-ω SST turbulence closure model. The reference geometry has NACA0015 as blade profile and the CFD results were compared with the experimental values. The performance characteristics of the new airfoil profiles were compared with the reference case to analyse the suitability of airfoils in wave energy extraction. The NACA0021 airfoil profile showed better performance in the post-stall regime compared to the NACA0015 and the S1046 airfoil profiles.


2003 ◽  
Vol 125 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Katsuhisa Fujita ◽  
Atsuhiko Shintani ◽  
Masakazu Ono

In this paper, the stability of a thin cylindrical shell subjected to axial leakage flow is discussed. In this paper, the first part of a study of the axial leakage flow-induced vibration of a thin cylindrical shell, we focus on axisymmetric vibration, that is, the ringlike vibration of a shell. The coupled equations between a shell and a fluid are obtained by using the Donnell’s shell theory and the Navier-Stokes equation. The added mass, added damping and added stiffness matrices in the coupled equations are described by utilizing unsteady fluid forces on a shell. The influence of the axial flow velocity on the unstable phenomena is clarified concerning axisymmetric vibration mode of shell. The numerical calculations are performed taking the dimensions of shell and fluid as parameters.


1988 ◽  
Vol 110 (4) ◽  
pp. 549-556 ◽  
Author(s):  
K. R. Kirtley ◽  
B. Lakshminarayana

A new coupled parabolic-marching method was developed to compute the three-dimensional turbulent flow in a turbine endwall cascade, a compressor cascade wake, and an axial flow compressor rotor passage. The method solves the partially parabolized incompressible Navier–Stokes equation and continuity in a coupled fashion. The continuity equation was manipulated using pseudocompressibility theory to give a convergent algorithm for complex geometries. The computed end-wall boundary layers and secondary flow compared well with the experimental data for the turbine cascade as did the wake profiles for the compressor cascade using a k–ε turbulence model. Suction side boundary layers, pressure distributions, and exit stagnation pressure losses compared reasonably well with the data for the compressor rotor.


Author(s):  
P. Madhan Kumar ◽  
Paresh Halder ◽  
Abdus Samad

A Wells turbine is an axial flow reaction turbine, which consists of a symmetrical airfoil at 90° stagger. It is commonly used as a power take-off device in the oscillating water column. This turbine is prone to stall at higher flow coefficients and have narrow operating range. There are several parameters, which influence the stall characteristics of the turbine, one of them is the tip leakage flow. Radiused blade tip was shown to suppress separation bubble and mitigate internal gap loss. In this study, the aerodynamic characteristics of Wells turbine with radiused blade tip were investigated. The numerical analysis was done by solving three-dimensional steady Reynolds-averaged Navier-Stokes equation with k-ω SST turbulence model. The turbine with blade profile NACA 0015 was taken as the reference blade, and the numerical results were validated with the experimental data. Radiused tip blades with different fillet radius were analysed and they showed similar performance. They improved the operating range and peak torque coefficient by 25% and 37% respectively. The fluid dynamics behind the performance augmentation was also analyzed and reported.


1984 ◽  
Vol 106 (3) ◽  
pp. 628-633 ◽  
Author(s):  
L. M. C. Gato ◽  
A. F. de O. Falca˜o

A theoretical investigation is presented concerning the aerodynamic performance of the Wells turbine, a self-rectifying, axial-flow turbine suitable for energy extraction from a reciprocating air flow. A two-dimensional analysis is developed, and expressions, based on potential flow, are derived for the blade shape maximizing the turbine efficiency. Three-dimensional effects and profile losses are then accounted for by means of an actuator disk theory, which shows that large radial distortions of axial velocity profile can occur, depending on blade shape, with important implications on the extent of the stall-free conditions.


Sign in / Sign up

Export Citation Format

Share Document