On the Theory of the Wells Turbine

1984 ◽  
Vol 106 (3) ◽  
pp. 628-633 ◽  
Author(s):  
L. M. C. Gato ◽  
A. F. de O. Falca˜o

A theoretical investigation is presented concerning the aerodynamic performance of the Wells turbine, a self-rectifying, axial-flow turbine suitable for energy extraction from a reciprocating air flow. A two-dimensional analysis is developed, and expressions, based on potential flow, are derived for the blade shape maximizing the turbine efficiency. Three-dimensional effects and profile losses are then accounted for by means of an actuator disk theory, which shows that large radial distortions of axial velocity profile can occur, depending on blade shape, with important implications on the extent of the stall-free conditions.

1970 ◽  
Vol 92 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Ramani Mani

An analysis is presented which treats the noise generation from an axial flow fan row by given forces including the effects of a moving medium. The linearization of Euler’s equations to yield tractable problems for fan noise is discussed. The three-dimensional problem is decomposed into several two-dimensional problems. Finally, full details are given of a two-dimensional analysis to predict the amounts of acoustic energy, at the blade passing frequency and its harmonics, radiated up and downstream of a blade row due to its interaction with a neighboring row.


2007 ◽  
Vol 51 (02) ◽  
pp. 182-186
Author(s):  
Tracie J. Barber

The accurate prediction of ground effect aerodynamics is an important aspect of wing-in-ground (WIG) effect vehicle design. When WIG vehicles operate over water, the deformation of the nonrigid surface beneath the body may affect the aerodynamic performance of the craft. The likely surface deformation has been considered from a theoretical and numerical position. Both two-dimensional and three-dimensional cases have been considered, and results show that any deformation occurring on the water surface is likely to be caused by the wing tip vortices rather than an increased pressure distribution beneath the wing.


1996 ◽  
Vol 118 (4) ◽  
pp. 263-268 ◽  
Author(s):  
L. M. C. Gato ◽  
V. Warfield ◽  
A. Thakker

The paper describes an experimental investigation, and presents the results of the aerodynamic performance of a high-solidity Wells turbine for a wave power plant. A monoplane turbine of 0.6 m rotor diameter with guide vanes was built and tested. The tests were conducted in unidirectional steady airflow. Measurements taken include flow rate, pressure drop, torque, and rotational speed, as well as velocity and pressure distributions. Experimental results show that the presence of guide vanes can provide a remarkable increase in turbine efficiency.


1992 ◽  
Author(s):  
T. Takamura ◽  
F. Nishiguchi

This paper describes the relation between turbine efficiency and rotor blade loading parameters. Tests were carried out on 12 kinds of rotors, which had the same inlet velocity triangle and meridional contour, but different blade numbers (8–11) and blade lengths. The momentum thickness and shape factor of the boundary layers obtained from the results of a quasi-three dimensional flow analysis were used as the rotor blade loading parameters. It was found that blade loading could be evaluated by the shape factor at the mean stream surface and that turbine efficiency was affected by the blade shape of the exducer.


Author(s):  
H. Pfeil ◽  
J. Sieber

The performance of a blade in an axial-flow compressor rotor is compared with the performance in a two-dimensional cascade. Using a stationary hot-wire probe and a data processing system the velocity profiles across the rotor wakes were measured in order to calculate the profile losses and the lift coefficients of the rotor blade.


Author(s):  
Richard B. Medvitz ◽  
Michael L. Jonson ◽  
James J. Dreyer ◽  
Jarlath McEntee

High resolution RANS CFD analysis is performed to support the design and development of the Ocean Renewable Power Company (ORPC) TidGen™ multi-directional tidal turbine. Two-dimensional and three-dimensional unsteady, moving-mesh CFD is utilized to parameterize the device performance and to provide guidance for device efficiency improvements. The unsteady CFD analysis was performed using a well validated, naval hydrodynamic CFD solver and implementing dynamic overset meshes to perform the relative motion between geometric components. This dynamic capability along with the turbulence model for the expected massively separated flows was validated against published data of a high angle of attack pitching airfoil. Two-dimensional analyses were performed to assess both blade shape and operating conditions. The blade shape performance was parameterized on both blade camber and trailing edge thickness. The blades shapes were found to produce nearly the same power generation at the peak efficiency tip speed ratio (TSR), however off-design conditions were found to exhibit a strong dependency on blade shape. Turbine blades with the camber pointing outward radially were found to perform best over the widest range of TSR’s. In addition, a thickened blade trailing edge was found to be superior at the highest TSR’s with little performance degradation at low TSR’s. Three-dimensional moving mesh analyses were performed on the rotating portion of the full TidGen™ geometry and on a turbine blade stack-up. Partitioning the 3D blades axially showed that no sections reached the idealized 2D performance. The 3D efficiency dropped by approximately 12 percentage points at the peak efficiency TSR. A blade stack-up analysis was performed on the complex 3D/barreled/twisted turbine blade. The analysis first assessed the infinite length blade performance, next end effects were introduced by extruding the 2D foil to the nominal 5.6m length, next barreling was added to the straight foils, and finally twist was added to the foils to reproduce the TidGen™ geometry. The study showed that making the blades a finite length had a large negative impact on the performance, whereas barreling and twisting the foils had only minor impacts. Based on the 3D simulations the largest factor impacting performance in the 3D turbine was a reduction in mass flow through the turbine due to the streamlines being forces outward in the horizontal plane due to the turbine flow resistance. Strategies to mitigate these 3D losses were investigated, including adding flow deflectors on the turbine support structure and stacking multiple turbines in-line.


2020 ◽  
Vol 10 (20) ◽  
pp. 7375
Author(s):  
Thanh Tien Dao ◽  
Thi Kim Loan Au ◽  
Soo Hyung Park ◽  
Hoon Cheol Park

Many previous studies have shown that wing corrugation of an insect wing is only structurally beneficial in enhancing the wing’s bending stiffness and does not much help to improve the aerodynamic performance of flapping wings. This study uses two-dimensional computational fluid dynamics (CFD) in aiming to identify a proper wing corrugation that can enhance the aerodynamic performance of the KUBeetle, an insect-like flapping-wing micro air vehicle (MAV), which operates at a Reynolds number of less than 13,000. For this purpose, various two-dimensional corrugated wings were numerically investigated. The two-dimensional flapping wing motion was extracted from the measured three-dimensional wing kinematics of the KUBeetle at spanwise locations of r = (0.375 and 0.75)R. The CFD analysis showed that at both spanwise locations, the corrugations placed over the entire wing were not beneficial for improving aerodynamic efficiency. However, for the two-dimensional flapping wing at the spanwise location of r = 0.375R, where the wing experiences relatively high angles of attack, three specially designed wings with leading-edge corrugation showed higher aerodynamic performance than that of the non-corrugated smooth wing. The improvement is closely related to the flow patterns formed around the wings. Therefore, the proposed leading-edge corrugation is suggested for the inboard wing of the KUBeetle to enhance aerodynamic performance. The corrugation in the inboard wing may also be structurally beneficial.


Author(s):  
P. Madhan Kumar ◽  
Paresh Halder ◽  
Abdus Samad

A Wells turbine is an axial flow reaction turbine, which consists of a symmetrical airfoil at 90° stagger. It is commonly used as a power take-off device in the oscillating water column. This turbine is prone to stall at higher flow coefficients and have narrow operating range. There are several parameters, which influence the stall characteristics of the turbine, one of them is the tip leakage flow. Radiused blade tip was shown to suppress separation bubble and mitigate internal gap loss. In this study, the aerodynamic characteristics of Wells turbine with radiused blade tip were investigated. The numerical analysis was done by solving three-dimensional steady Reynolds-averaged Navier-Stokes equation with k-ω SST turbulence model. The turbine with blade profile NACA 0015 was taken as the reference blade, and the numerical results were validated with the experimental data. Radiused tip blades with different fillet radius were analysed and they showed similar performance. They improved the operating range and peak torque coefficient by 25% and 37% respectively. The fluid dynamics behind the performance augmentation was also analyzed and reported.


Sign in / Sign up

Export Citation Format

Share Document