scholarly journals INTER-COMPARISON BETWEEN MODIS SATELLITE-BASED AND AERONET GROUND-BASED AEROSOL OPTICAL DEPTH PRODUCTS IN VIETNAM

2020 ◽  
Vol 58 (3A) ◽  
pp. 124
Author(s):  
DUC LUONG NGUYEN ◽  
Thi Hieu Bui ◽  
Hoang Hiep Nguyen ◽  
Quang Trung Bui ◽  
Hoang Duong Do

Although a number of studies have extensively inter-compared the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-based aerosol optical depth (AOD) with the Aerosol Robotic Network (AERONET) ground-based AOD on both global and regional scales, almost no similar studies have been conducted for Vietnam - a humid subtropical climate region. For the first time, inter-comparison between the MODIS Terra and Aqua Collection 6.1 (C6.1) Dark Target (DT) 10 km, Deep Blue (DB) 10 km, and merged DT-DB 10 km with the AERONET AODs has been performed in different areas with different surface types and different climatic characteristics in Vietnam. Three investigated AERONET stations are Nghia Do (urban), Son La (mountainous rural), and Bac Lieu (coastal urban) with the studying periods of 2010 - 2016, 2012 - 2017, and 2010 - 2017, respectively. Our findings showed the better performances of DB algorithm than those of DT and DT-DB products in the urban area. Additionally, all MODIS AOD algorithm performed worse over the coastal area compared to those in the non-coastal areas. Generally, the ability of all the MODIS AODs to catch up the monthly-mean AERONET AODs has been expressed in this study.

2019 ◽  
Vol 197 ◽  
pp. 02011
Author(s):  
Nataliia Borodai

Aerosol optical depth can be retrieved from measurements performed by Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument. The MODIS satellite system includes two polar satellites, Terra and Aqua. Each of them flies over the Pierre Auger Observatory once a day, providing two measurements of aerosols per day and covering the whole area of the Observatory. MODIS aerosol data products have been generated by three dedicated algorithms over bright and dark land and over ocean surface. We choose the Deep Blue algorithm data to investigate the distribution of aerosols over the Observatory, as this algorithm is the most appropriate one for semi-arid land of the Pierre Auger Observatory. This data algorithm allows us to obtain aerosol optical depth values for the investigated region, and to build cloud-free aerosol maps with a horizontal resolution 0.1°×0.1°. Since a suffcient number of measurements was obtained only for Loma Amarilla and Coihueco fluorescence detector (FD) sites of the Pierre Auger Observatory, a more detailed analysis of aerosol distributions is provided for these sites. Aerosols over these FD sites are generally distributed in a similar way each year, but some anomalies are also observed. These anomalies in aerosol distributions appear mainly due to some transient events, such as volcanic ash clouds, fires etc. We conclude that the Deep Blue MODIS algorithm provides more realistic aerosol optical depth values than other available algorithms.


2017 ◽  
Author(s):  
Juan Carlos Antuña-Marrero ◽  
Victoria Cachorro Revilla ◽  
Frank García Parrado ◽  
Ángel de Frutos Baraja ◽  
Albeth Rodríguez Vega ◽  
...  

Abstract. In the present study, we report the first comparison of the aerosol properties measured with sun photometer at Camagüey, Cuba, with the MODerate resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua satellites. We compared the aerosol optical depth at 550 nm (AOD) and the Ångström Exponent (AE) from the sun photometer for the period 2008 to 2014 with the same variables measured by both MODIS instruments, that are spatially and temporally coincident. The comparison includes AOD derived with both Deep Blue (DB) and Dark Target (DT) algorithms from MODIS Collection 6. The AOD derived with DT algorithm for Terra and Aqua agrees better with AOD from the sun photometer than the AOD derived with DB. Additionally there is little difference between AOD from both satellite instruments, when they are compared with sun photometer AOD, allowing to combine AOD from Terra and Aqua for more comprehensive climatological statistics. The comparison of the AE showed similar results with reports in the literature about the little skills of the current DT and DB algorithms for its retrieval. In addition, we report the comparison of the broadband AOD (BAOD) from pyrheliometer measurements located at Camagüey site and other three meteorological stations along Cuba, with AOD measurements from the sun photometer and from MODIS onboard Terra and Aqua. The comparison of the BAOD from the four sites as a whole with coincident AOD from MODIS onboard Terra and Aqua showed similar results than the ones of the comparison between the sun photometer AOD and the AOD from the two satellite instruments. In the comparison between the BAOD and the AOD at each one of the eight individual sun photometer wavelengths, the results improve in the spectral range 400 to 675 nm, with the best result at 500 nm. The BAOD typical uncertainty ranges from 0.04 to 0.06 at this band. The results from the BAOD comparisons demonstrate its reliability for characterizing AOD at sites with no sun photometer and for extending backward in time AOD estimates.


2016 ◽  
Author(s):  
Antigoni Panagiotopoulou ◽  
Panagiotis Charalambidis ◽  
Christos Fountoukis ◽  
Christodoulos Pilinis ◽  
Spyros N. Pandis

Abstract. The ability of the chemical transport model (CTM) PMCAMx to reproduce aerosol optical depth (AOD) measurements by the Aerosol Robotic Network (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) over Europe during a photochemically active period is evaluated. Periods with high dust levels are excluded so the analysis focuses on the ability of the model to simulate the mostly secondary aerosol and its interactions with water. PMCAMx reproduces the monthly mean MODIS and AERONET AOD values over the Iberian Peninsula, the British Isles, central Europe, and Russia with fractional bias less than 15 % and fractional error less than 30 %. However, the model overestimates the AOD over northern Europe probably due to an overestimation of organic aerosol and sulfates. On the other end, PMCAMx underestimates the monthly mean MODIS AOD over the Balkans, the Mediterranean, and the South Atlantic. These errors are probably due to an underestimation of sulfates. Sensitivity tests indicate that the evaluation results of the monthly mean AODs are quite sensitive to the relative humidity (RH) fields used by PMCAMx, but are not sensitive to the simulated size distribution and the black carbon mixing state.


2011 ◽  
Vol 11 (2) ◽  
pp. 557-565 ◽  
Author(s):  
Y. Shi ◽  
J. Zhang ◽  
J. S. Reid ◽  
B. Holben ◽  
E. J. Hyer ◽  
...  

Abstract. As an update to our previous use of the collection 4 Moderate Resolution Imaging Spectroradiometer (MODIS) over-ocean aerosol optical depth (AOD) data, we examined ten years of Terra and eight years of Aqua collection 5 data for its potential usage in aerosol assimilation. Uncertainties in the over-ocean MODIS AOD were studied as functions of observing conditions, such as surface characteristics, aerosol optical properties, and cloud artifacts. Empirical corrections and quality assurance procedures were developed and compared to collection 4 data. After applying these procedures, the Root-Mean-Square-Error (RMSE) in the MODIS Terra and Aqua AOD are reduced by 30% and 10–20%, respectively, with respect to AERONET data. Ten years of Terra and eight years of Aqua quality-assured level 3 MODIS over-ocean aerosol products were produced. The newly developed MODIS over-ocean aerosol products will be used in operational aerosol assimilation and aerosol climatology studies, as well as other research based on MODIS products.


2020 ◽  
Vol 12 (7) ◽  
pp. 1102
Author(s):  
Bin Zou ◽  
Ning Liu ◽  
Wei Wang ◽  
Huihui Feng ◽  
Xiangping Liu ◽  
...  

Current reported spatiotemporal solutions for fusing multisensor aerosol optical depth (AOD) products used to recover gaps either suffer from unacceptable accuracy levels, i.e., fixed rank smooth (FRS), or high time costs, i.e., Bayesian maximum entropy (BME). This problem is generally more serious when dealing with multiple AOD products in a long time series or over large geographic areas. This study proposes a new, effective, and efficient enhanced FRS method (FRS-EE) to fuse satellite AOD products with uncertainty constraints. AOD products used in the fusion experiment include Moderate Resolution Imaging SpectroRadiometer (MODIS) DB/DT_DB_Combined AOD and Multiangle Imaging SpectroRadiometer (MISR) AOD across mainland China from 2016 to 2017. Results show that the average completeness of original, initial FRS fused, and FRS-EE fused AODs with uncertainty constraints are 22.80%, 95.18%, and 65.84%, respectively. Although the correlation coefficient (R = 0.77), root mean square error (RMSE = 0.30), and mean bias (Bias = 0.023) of the initial FRS fused AODs are relatively lower than those of original AODs compared to Aerosol Robotic Network (AERONET) AOD records, the accuracy of FRS-EE fused AODs, which are R = 0.88, RMSE = 0.20, and Bias = 0.022, is obviously improved. More importantly, in regions with fully missing original AODs, the accuracy of FRS-EE fused AODs is close to that of original AODs in regions with valid retrievals. Meanwhile, the time cost of FRS-EE for AOD fusion was only 2.91 h; obviously lower than the 30.46 months taken for BME.


2015 ◽  
Vol 8 (8) ◽  
pp. 8727-8752 ◽  
Author(s):  
A. M. Sayer ◽  
N. C. Hsu ◽  
C. Bettenhausen

Abstract. The scan geometry of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors results in a pixel shape distortion known as the "bowtie effect". Specifically, sensor pixels near the edge of the swath are elongated along-track and across-track compared to pixels near the centre of the swath, resulting in an increase of pixel area by up to a factor of ~ 9, and additionally pixels acquired from consecutive scans overlap. The Deep Blue and Dark Target aerosol optical depth (AOD) retrieval algorithms aggregate sensor pixels and provide level 2 (L2) AOD at a nominal horizontal pixel size of 10 km, but the bowtie distortion means that they also suffer from this size increase and overlap. This means that the spatial characteristics of the data vary as a function of satellite viewing zenith angle (VZA) and, for VZA > 30°, corresponding to approximately 50 % of the data, are areally enlarged by a factor of 50 % or more compared to this nominal pixel area, and are not spatially independent of each other. This has implications for retrieval uncertainty and aggregated statistics, causing a narrowing of AOD distributions near the edge of the swath, as well as for data comparability from the application of similar algorithms to sensors without this level of bowtie distortion. Additionally, the pixel overlap is not obvious to users of the L2 aerosol products because only pixel centres, not boundaries, are provided within the L2 products. A two-step procedure is proposed to mitigate the effects of this distortion on the MODIS aerosol products. The first (simple) step involves changing the order in which pixels are aggregated in L2 processing to reflect geographical location rather than scan order, which removes the bulk of the overlap between L2 pixels, and slows the rate of growth of L2 pixel size vs. VZA. This can be achieved without significant changes to existing MODIS processing algorithms. The second step involves additionally changing the number of sensor pixels aggregated across-track as a function of VZA, which preserves L2 pixel size at around 10 km × 10 km across the whole swath, but would require algorithmic quality assurance tests to be re-evaluated. Both of these steps also improve the extent to which the pixel locations a user would infer from the L2 data products represent the actual spatial extent of the L2 pixels.


2016 ◽  
Vol 9 (11) ◽  
pp. 4257-4272
Author(s):  
Antigoni Panagiotopoulou ◽  
Panagiotis Charalampidis ◽  
Christos Fountoukis ◽  
Christodoulos Pilinis ◽  
Spyros N. Pandis

Abstract. The ability of chemical transport model (CTM) PMCAMx to reproduce aerosol optical depth (AOD) measurements by the Aerosol Robotic Network (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) over Europe during the photochemically active period of May 2008 (EUCAARI campaign) is evaluated. Periods with high dust or sea-salt levels are excluded, so the analysis focuses on the ability of the model to simulate the mostly secondary aerosol and its interactions with water. PMCAMx reproduces the monthly mean MODIS and AERONET AOD values over the Iberian Peninsula, the British Isles, central Europe, and Russia with a fractional bias of less than 15 % and a fractional error of less than 30 %. However, the model overestimates the AOD over northern Europe, most probably due to an overestimation of organic aerosol and sulfates. At the other end, PMCAMx underestimates the monthly mean MODIS AOD over the Balkans, the Mediterranean, and the South Atlantic. These errors appear to be related to an underestimation of sulfates. Sensitivity tests indicate that the evaluation results of the monthly mean AODs are quite sensitive to the relative humidity (RH) fields used by PMCAMx, but are not sensitive to the simulated size distribution and the black carbon mixing state. The screening of the satellite retrievals for periods with high dust (or coarse particles in general) concentrations as well as the combination of the MODIS and AERONET datasets lead to more robust conclusions about the ability of the model to simulate the secondary aerosol components that dominate the AOD during this period.


2020 ◽  
Vol 12 (12) ◽  
pp. 1985 ◽  
Author(s):  
Sundar Christopher ◽  
Pawan Gupta

Using a combined Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) mid-visible aerosol optical depth (AOD) product at 0.1 × 0.1-degree spatial resolution and collocated surface PM2.5 (particulate matter with aerodynamic diameter smaller than 2.5 μm) monitors, we provide a global five-year (2015–2019) assessment of the spatial and seasonal AOD–PM2.5 relationships of slope, intercepts, and correlation coefficients. Only data from ground monitors accessible through an open air-quality portal that are available to the worldwide community for air quality research and decision making are used in this study. These statistics that are reported 1 × 1-degree resolution are important since satellite AOD is often used in conjunction with spatially limited surface PM2.5 monitors to estimate global distributions of surface particulate matter concentrations. Results indicate that more than 3000 ground monitors are now available for PM2.5 studies. While there is a large spread in correlation coefficients between AOD and PM2.5, globally, averaged over all seasons, the correlation coefficient is 0.55 with a unit AOD producing 54 μgm−3 of PM2.5 (Slope) with an intercept of 8 μgm−3. While the number of surface PM2.5 measurements has increased by a factor of 10 over the last decade, a concerted effort is still needed to continue to increase these monitors in areas that have no surface monitors, especially in large population centers that will further leverage the strengths of satellite data.


Sign in / Sign up

Export Citation Format

Share Document