Mandibular Implant-Supported Overdenture: An In Vitro Comparison of Ball, Bar, and Magnetic Attachments

2013 ◽  
Vol 39 (3) ◽  
pp. 302-307 ◽  
Author(s):  
V. Manju ◽  
T. Sreelal

In an implant-supported overdenture, the optimal stress distribution on the implants and least denture displacement is desirable. This study compares the load transfer characteristics to the implant and the movement of overdenture among 3 different types of attachments (ball-ring, bar-clip, and magnetic). Stress on the implant surface was measured using the strain-gauge technique and denture displacement by dial gauge. The ball/O-ring produces the optimal stress on the implant body and promotes denture stability.

2001 ◽  
Author(s):  
Denis J. DiAngelo ◽  
Weiqiang Liu ◽  
Kristine M. Olney ◽  
Kevin T. Foley

Abstract Cervical spondylosis is the most common degenerative disorder affecting the cervical spine and is often treated surgically to prevent further neurological deterioration. However, clinical experience has shown that anterior cervical plating does not prevent construct failure in multi-level cervical corpectomy (Vaccaro et al., 1998). We have previously shown that anterior cervical plating reverses the load transfer through multi-level strut-grafts and may promote pistoning of these grafts (DiAngelo et al., 2000). The design of the anterior cervical plate (ACP) may contribute to this phenomenon. The purpose of this study was to compare the graft loading mechanics of two different anterior cervical plating systems; one with a constrained plate-screw interface versus another with a semi-constrained, translational plate-screw interface.


2021 ◽  
Vol 10 (9) ◽  
pp. e26110918035
Author(s):  
Caroline de Freitas Jorge ◽  
Letícia Cerri Mazza ◽  
Marcio Campaner ◽  
Abbas Zahoui ◽  
Lorena Scaioni Silva ◽  
...  

The aim of the study was to evaluate the biomechanical behavior, through photoelastic (PA) and strain gauge analysis (SA), of single crown implant-supported prosthesis with different implant connections (external hexagon (EH), Morse taper (MT), internal Morse hexagon (IMH), Morse taper hexagon (MTH), and frictional Morse taper (FMT)) and different occlusal loads (axial and oblique (45°)). The data were submitted to ANOVA and Tukey's test (α = 0,05). By photoelasticity, regarding axial load, EH produced more high-intensity fringes (2.784 kPa) than the other connections. For the oblique load, all connections generated the same high-intensity fringes (3.480 kPa), except by MT group, that produced the same amount as axial load (2.088 kPa). For the strain gauge analysis, for the axial load, EH showed the highest microstrains value (158,76) and lowets for MT (59,88). For all other groups, oblique load produced higher microstrains values than axial load. For the oblique load, MT showed the lowest microstrains value (88.79), followed by FMT (391,43), EH (468,47) and IMH (507,65). MTH presented the highest value (621,25) compared to all groups (P <0.05). When comparing both loads of the same connection system, only MT showed similar values (P <0.05). It was possible to conclude that the different connection systems tested directly influenced the stress distribution at both loads. The implants with internal connection present less stress distribution when submitted to axial load than the EH group. However, when the oblique load was applied, all connections presented higher values of stress distribution, except for the MT group.


2008 ◽  
Vol 17 (5) ◽  
pp. 357-364 ◽  
Author(s):  
Asvin Vasanthan ◽  
Hyunbin Kim ◽  
Saulius Drukteinis ◽  
William Lacefield

1994 ◽  
Vol 65 (10) ◽  
pp. 942-948 ◽  
Author(s):  
David K. Dennison ◽  
Markus B. Huerzeler ◽  
Carlos Quinones ◽  
Raul G. Caffesse

Author(s):  
Jagjit Singh Dhaliwal ◽  
Juliana Marulanda ◽  
Jingjing Li ◽  
Sharifa Alebrahim ◽  
Jocelyne Sheila Feine ◽  
...  

2020 ◽  
Vol 08 (01) ◽  
pp. 22-31
Author(s):  
Aquib Javaid ◽  
Tarun Kalra ◽  
Manjit Kumar ◽  
Ajay Bansal ◽  
Udey Singh Wirring

Abstract Introduction The overdenture is an alternative to fixed implant-supported prosthesis for its relatively low-cost and in clinical cases where it is impossible to place multiple implants with appropriate number and arrangement in the arch to support a fixed prosthesis. In implant-supported overdentures, many attachments such as bars, ball, and magnets can be used. The anchorage system affects the retention and stability of the overdenture as well as the load transfer to the implant and the bone. The purpose of this study was to evaluate the exerted stresses on implants and implant–abutment interface by comparing different attachment systems used for implant-supported maxillary and mandibular overdentures using finite-element analysis. Materials and Methods Stress distribution in five different models with different attachments were evaluated using finite-element analysis. The studied attachment systems were Ball/O-ring and bar-clip attachments. Three models in mandible were studied, two implants with ball attachments, two implants with bar, and four implants connected with a bar. In maxilla, two models were studied, four implants with ball attachments, and four implants connected with bar. Forces were applied bilaterally on each model in the canine and molar region separately. The forces applied were 35N axially, 70N obliquely, and 10N horizontally. Results The ball attachments models showed the highest amount of stresses on the bone and on the implants in maxilla and mandible. The bar-clip attachment with four implants showed least stress in maxilla as well as in the mandible. The bar on four implants has better stress distribution as compared with the bar on the two implants.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2345 ◽  
Author(s):  
Bruna Sinjari ◽  
Gianmaria D’Addazio ◽  
Martina Bozzi ◽  
Renato Celletti ◽  
Tonino Traini ◽  
...  

The aim of this in vitro study was to evaluate the alterations of a titanium surface after treatment with two different types of ultrasonic tips: conventional steel versus an innovative copper alloy silver-plated one. Twenty smooth-surface, grade IV unalloyed titanium discs were divided into two groups. The discs were ultrasonically instrumented and the scaler was connected with a loading machine. The surface morphology was examined using scanning electron microscopy (SEM) and fractal analysis of lacunarity was calculated to highlight the alteration of the surface using the two different tips. The SEM analysis showed different degrees of surface roughness between the two types of scaler tips. Moreover, these observations demonstrated that the new tip showed fewer irregularities on the disc’s surface than the conventional steel tip. The statistical and fractal analysis showed a statistically significant difference between the two groups. Surface alterations of titanium induced by the conventional ultrasonic tips were much greater than those made by copper alloy silver plated tips. The presented results suggest that the use of this new ultrasonic tip may reduce the alterations on the implant surface during its use in dental practice.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Sign in / Sign up

Export Citation Format

Share Document