Horizontal Augmentation Through the Ridge-Split Procedure: A Predictable Surgical Modality in Implant Reconstruction

2013 ◽  
Vol 39 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Len Tolstunov ◽  
Bruce Hicke

Among alveolar ridge augmentation techniques, the ridge-split procedure demonstrates many benefits, including no need for a second (donor) surgical site, rare risk of inferior alveolar nerve injury, and less pain and swelling, and others. Lateral bone augmentation through the ridge-split works best in a localized lateral bony defect intended for 1 or 2 implants and where the ridge is vertically intact. In this article, the authors present a detailed description of the implant-driven technique of alveolar ridge-split procedure in small and large bone deficiencies, in maxilla and mandible, supplemented by multiple photographs. The authors emphasize the need for careful manipulation of the thin ridge based on knowledge of precise surgical principles and stress that a practitioner needs specialized training and experience to perform this type of alveolar bone augmentation.

2015 ◽  
Vol 16 (9) ◽  
pp. 768-773 ◽  
Author(s):  
Mogammad Thabit Peck

ABSTRACT Background The loss of teeth, whether it is from trauma or pathology, is accompanied by a concomitant loss of the surrounding alveolar bone. Khoury introduced a new method for grafting ridge defects in 2007. This technique involved using thin cortical plates harvested from the ramus, and in a ‘sandwich’ type manner, interposed these bone plates with cancellous bone harvested from the same site. Although this has shown success, the technique suffers from similar disadvantages of most harvesting techniques, i.e. a need for a second surgical site, and donor site morbidity. In this case presentation, we report the use of an allograft bone plate in a similar manner as was previously described by Khoury, to reconstruction lost alveolar bone in order to facilitate the correct three dimensional (3D) placement of dental implants. Case description A 53-year-old female presented for the restoration of her missing dentition in her upper jaw. The cone bean computed tomography (CBCT) revealed a large horizontal bony defect in the region of the upper anterior teeth, with minimal remaining bone. Using bone fixation screws, the bone plates were fixed to the buccal defect and the space between the plate and the existing palatal bone wall was then filled using a combination of autograft bone scrapings and xenograft bone particles. Six months after the initial surgery, the grafted sites were surgically re-entered and showed a marked increase in ridge width. Conclusion Evidence exists for the use of bone allografts for a variety of alveolar bone augmentation procedures. The case presented outlines another use for this versatile biomaterial. Clinical significance Bone harvesting for large alveolar defects is invariably associated with increased morbidity and an increased risk of postoperative complications. The above technique described by the author, may be used as a suitable alternative to reconstruct these defects, without harvesting bone from a second surgical site. How to cite this article Peck MT. Alveolar Ridge Augmentation using the Allograft Bone Shell Technique. J Contemp Dent Pract 2015;16(9):768-773.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3286
Author(s):  
Hotaka Kawai ◽  
Shintaro Sukegawa ◽  
Keisuke Nakano ◽  
Kiyofumi Takabatake ◽  
Sawako Ono ◽  
...  

The purpose of this study was to investigate the bone healing properties and histological environment of a u-HA/PLLA/PGA (u-HA—uncalcined and unsintered hydroxyapatite, PLLA—Poly L-lactic acid, PGA—polyglycolic acid) composite device in humans, and to understand the histological dynamics of using this device for maxillofacial treatments. Twenty-one subjects underwent pre-implant maxillary alveolar ridge augmentation with mandibular cortical bone blocks using u-HA/PLLA or u-HA/PLLA/PGA screws for fixation. Six months later, specimens of these screws and their adjacent tissue were retrieved. A histological and immunohistochemical evaluation of these samples was performed using collagen 1a, ALP (alkaline phosphatase), and osteocalcin. We observed that alveolar bone augmentation was successful for all of the subjects. Upon histological evaluation, the u-HA/PLLA screws had merged with the bone components, and the bone was directly connected to the biomaterial. In contrast, direct bone connection was not observed for the u-HA/PLLA/PGA screw. Immunohistological findings showed that in the u-HA/PLLA group, collagen 1a was positive for fibers that penetrated vertically into the bone. Alkaline phosphatase was positive only in the u-HA/PLLA stroma, and the stroma was negative for osteocalcin. In this study, u-HA/PLLA showed a greater bioactive bone conductivity than u-HA/PLLA/PGA and a higher biocompatibility for direct bone attachment. Furthermore, u-HA/PLLA was shown to have the potential for bone formation in the stroma.


2020 ◽  
Author(s):  
Melike Aytekin ◽  
Volkan Arisan

Implant supported restorations have become an ideal treatment alternative for the rehabilitation of edentulous sites. However alveolar bone defects due to resorption, trauma or oncologic diseases may considerably affect favorable implant positioning and prosthetic outcomes. Various alveolar ridge augmentation procedures are available to gain enough bone volume and apply the ideal treatment plan afterwards. Guided bone regeneration, ridge splitting, distraction osteogenesis, maxillary sinus augmentation and autogenous block bone grafting are main techniques which have successful outcomes in reconstruction of bone defects. It’s difficult to demonstrate that one augmentation procedure offers better outcomes than another. Studies documenting augmentation techniques seem to be comparable and state favorable results for each procedure.


Author(s):  
Kai-Fang Hu ◽  
Ying-Chu Lin ◽  
Yu-Ting Huang ◽  
Yu-Hsiang Chou

Abstract Objectives The aim of this study was to assess whether alveolar ridge preservation (ARP) can reduce the need of ridge augmentation at posterior tooth sites. Material and methods This study enrolled patients who received dental implants at posterior tooth sites during 2013–2019. Demographic data and dental treatment histories were collected. Based on healing patterns after tooth extraction, patients were divided into ARP and spontaneous healing (SH) groups. Three surgical treatment plans were devised according to the alveolar bone volume on cone-beam computed tomography (CBCT). The three treatment plans were to perform implant alone, simultaneous guided bone regeneration (GBR) and implantation, and staged GBR before implantation. Statistical analyses were performed to determine relationships. Results There were 92 implant records in the ARP group and 249 implant records in the SH group. A significant intergroup difference was observed regarding the frequency distribution of the treatment modality of staged GBR before implant (χ2 = 15.07, p = 0.0005). Based on the implant alone treatment modality and simple logistic regression, the SH pattern was related to staged GBR before implant (SH vs. ARP: crude odds ratio (OR) = 4.65, 95% confidence interval (CI) = 2.15–11.61, p = 0.0003). After adjusting confounding factors, the risk was still significant (adjusted OR = 5.02, 95% CI = 2.26–12.85, p = 0.0002). Conclusions The study results suggested that ARP is more likely to lead to the treatment modality of implant alone and reduce the need for staged GBR before implantation. Clinical relevance This study describes ARP capable of minimizing the need for staged GBR before implantation and shortening the treatment duration.


2014 ◽  
Vol 4 (3) ◽  
pp. 129-138
Author(s):  
Robert Spears ◽  
Ibtisam Al-Hashimi ◽  
Eric S Solomon ◽  
David G Kerns ◽  
William W Hallmon ◽  
...  

ABSTRACT Calcium sulfate is a biologically compatible osteoconductive graft material that binds underlying bone graft and provide space maintenance. The purpose of this study was to evaluate calcium sulfate as a barrier compared to a collagen membrane for augmentation of a standardized surgically created ridge defect. For this purpose, bilateral extraction of mandibular premolars was performed on six foxhounds (Canis familiaris). Eight weeks later, a standardized osseous ridge defects (24 total) were created using a 6 mm trephine. The study was approved by the Institutional Animal Care and Use Committee (IACUC) at Baylor College of Dentistry. The osseous defects were allocated into three groups (8 defects each): group 1 received autogenous bone graft covered with collagen membrane (CM); group 2 received autogenous bone graft covered with calcium sulfate barrier (CS), and group 3 was used as control and did not receive bone augmentation and was used as control. The animals were sacrificed after 12 weeks following bone augmentation and sites were evaluated histologically for total ridge width, percentage of bone gain and cortical bone thickness. Results All sites exhibited bony fill within the defect. Analysis of variance did not reveal statistically significant difference in the mean total bone gain among CM, CS, and control groups (12.2,11.6, and 11.9) mm2, respectively, p = 0.875. Conclusion Calcium sulfate does not appear to improve bone regeneration in an osseous defect. How to cite this article Heaton ML, Kerns DG, Hallmon WW, Kessler HP, Spears R, Solomon ES, Al-Hashimi I. Comparison of Calcium Sulfate and Bovine Collagen Barriers for Alveolar Ridge Augmentation. J Contemp Dent 2014;4(3):129-138.


2020 ◽  
Vol 99 (4) ◽  
pp. 402-409 ◽  
Author(s):  
G. Avila-Ortiz ◽  
M. Gubler ◽  
M. Romero-Bustillos ◽  
C.L. Nicholas ◽  
M.B. Zimmerman ◽  
...  

Alveolar ridge preservation (ARP) therapy is indicated to attenuate the physiologic resorptive events that occur as a consequence of tooth extraction with the purpose of facilitating tooth replacement therapy. This randomized controlled trial was primarily aimed at testing the efficacy of ARP as compared with unassisted socket healing. A secondary objective was to evaluate the effect that local phenotypic factors play in the volumetric reduction of the alveolar bone. A total of 53 subjects completed the study. Subjects were randomized into either the control group, which involved only tooth extraction (EXT n = 27), or the experimental group, which received ARP using a combination of socket grafting with a particulate bone allograft and socket sealing with a nonabsorbable membrane (dPTFE) following tooth extraction (ARP n = 26). A set of clinical, linear, volumetric, implant-related, and patient-reported outcomes were assessed during a 14-wk healing period. All linear bone assessments (horizontal, midbuccal, and midlingual reduction) revealed that ARP is superior to EXT. Likewise, volumetric bone resorption was significantly higher in the control group (mean ± SD: EXT = −15.83% ± 4.48%, ARP = −8.36% ± 3.81%, P < 0.0001). Linear regression analyses revealed that baseline buccal bone thickness is a strong predictor of alveolar bone resorption in both groups. Interestingly, no significant differences in terms of soft tissue contour change were observed between groups. Additional bone augmentation to facilitate implant placement in a prosthetically acceptable position was deemed necessary in 48.1% of the EXT sites and only 11.5% of the ARP sites ( P < 0.004). Assessment of perceived postoperative discomfort at each follow-up visit revealed a progressive decrease over time, which was comparable between groups. Although some extent of alveolar ridge remodeling occurred in both groups, ARP therapy was superior to EXT as it was more efficacious in the maintenance of alveolar bone and reduced the estimated need for additional bone augmentation at the time of implant placement (ClinicalTrials.gov NCT01794806).


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Gaia Pellegrini ◽  
Giorgio Pagni ◽  
Giulio Rasperini

Guided tissue regenerative (GTR) therapies are performed to regenerate the previously lost tooth supporting structure, thus maintaining the aesthetics and masticatory function of the available dentition. Alveolar ridge augmentation procedures (GBR) intend to regain the alveolar bone lost following tooth extraction and/or periodontal disease. Several biomaterials and surgical approaches have been proposed. In this paper we report biomaterials and surgical techniques used for periodontal and bone regenerative procedures. Particular attention will be adopted to highlight the biological basis for the different therapeutic approaches.


Author(s):  
Vineetha Venugopalan ◽  
Anegundi Raghavendra Vamsi ◽  
Santhosh Shenoy ◽  
Karishma Ashok ◽  
Biju Thomas

Successful implant treatment requires prosthetically driven placement of an implant, primary stability at placement, and careful living bone management. The resorptive changes of alveolar bone are an inevitable process following tooth loss, periodontal disease or trauma which causes bone defects. This results in various aesthetic and functional complications such as soft tissue recession, infection and inflammation. Various methods have been tried and advocated for augmenting these bone deficiencies. Guided Bone Regeneration (GBR) is a successful modality for bone augmentation with a wide range of indications and helps restore the alveolar ridge dimensions. It utilises the principle of Guided Tissue Regeneration (GTR) for space maintenance within a bony defect. Different types of barrier membranes are being utilised along with various bone grafts in GBR. Thorough knowledge regarding the biology of bone is required before the initiation of any bone augmentation procedure. A combination of Collagen Membrane (CM) and graft material was found successful for GBR. Hence, this review focuses on presentation of best available evidence for various aspects of GBR.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Fabian Duttenhoefer ◽  
Peter Varga ◽  
Dominik Jenni ◽  
Leonard Grünwald ◽  
Luisa Thiemann ◽  
...  

The alveolar ridge splitting technique (ARST) offers an alternative to classic ridge augmentation techniques for successful insertion of dental implants. However, the buccal lamella is at risk of fracturing during ARST distraction. To better understand the fracture mechanisms and displacement limits of the split lamella, this study conducted biomechanical tests on human cadaveric maxilla specimens having extremely atrophied alveolar ridges treated with ARST. A total of 12 standardized alveolar splits were prepared on the maxillae of 3 elderly female donors using an oscillating piezoelectric saw. Mimicking the surgical distraction process of the lamella, each split was tested to failure using a dental osteotome attached to the crosshead of an electromechanical testing system. All specimens were scanned by means of high-resolution peripheral quantitative computed tomography prior to and post testing to evaluate split geometries and failure modes. Split stiffness, failure force, and displacement were 27.4 ± 18.7  N/mm, 12.0 ± 8.4  N, and 0.97 ± 0.31  mm, with no significant differences between anatomical sides and split locations ( p ≥ 0.17 ). Stiffness correlated significantly with failure force ( R 2 = 0.71 , p < 0.01 ). None of the alveolar split widths correlated significantly with the outcomes from biomechanical testing ( p ≥ 0.10 ). The results suggest that simple geometrical measures do not predict the allowed extent of lamella distraction prior to failure. More sophisticated methods are required for surgical planning to optimize the ARST outcomes. Still, the present study may advocate a clinical protocol for the maxilla where the implant site is prepared directly after osteotomy setting and immediately before full lamella dislocation, when the lamella is still stable, resistant to mechanical stress, and bone loss caused by the abrasion of the burr is minimized.


Sign in / Sign up

Export Citation Format

Share Document