scholarly journals Effect of straw mulching and herbicides on the weed density, dry matter accumulation of weeds and chlorophyll content in maize (Zea mays L.)

2019 ◽  
Vol 15 (1) ◽  
pp. 107-114
Author(s):  
Ramandeep Kaur ◽  
Charanjeet Kaur
1988 ◽  
Vol 68 (4) ◽  
pp. 935-940 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. W. BRUULSEMA

The response of rate and duration of kernel dry matter accumulation to temperatures in the range 10–25 °C was studied for two maize (Zea mays L.) hybrids grown under controlled-environment conditions. Kernel growth rates during the period of linear kernel growth increased linearly with temperature (b = 0.3 mg kernel−1 d−1 °C−1). Kernel dry weight at physiological maturity varied little among temperature treatments because the increase in kernel growth rate with increase in temperature was associated with a decline in the duration of kernel growth proportional to the increase in kernel growth rate.Key words: Zea mays L, period of linear kernel dry matter accumulation, controlled-environment conditions, kernel growth rate


2018 ◽  
Vol 44 (3) ◽  
pp. 359-356
Author(s):  
Mahta Haghjoo ◽  
Abdollah Bahrani

Out of 20, 40, 60 and 80 per cent moisture depletion 20% showed significantly higher grain yields, biological yield, chlorophyll a, b than the others. However, the highest contribution of stem and leaf dry matter remobilization in grain yield were obtained in 80% moisture depletion and 300 kg N/ha and the lowest one was found in the 20% moisture depletion and 150 kg N/ha. Nitrogen application increased all traits, however there were no significant difference between 250 and 300 kg N/ha.


Crop Science ◽  
1965 ◽  
Vol 5 (4) ◽  
pp. 365-367 ◽  
Author(s):  
C. O. Grogan ◽  
Patricia Sarvella ◽  
J. O. Sanford ◽  
H. V. Jordan

1989 ◽  
Vol 69 (2) ◽  
pp. 295-302 ◽  
Author(s):  
M. H. MILLER ◽  
G. K. WALKER ◽  
M. TOLLENAAR ◽  
K. G. ALEXANDER

Maize (Zea mays L.) was grown outdoors hydroponically and in soil to compare yields in the two systems and to determine the extent to which soil temperature and plant nutrition limit yield of soil-grown plants. The hydroponic system consisted of 22.5-L plastic pails filled with "Turface" to which nutrient solution was added at least twice daily. In all 3 yr dry-matter accumulation throughout the growing season was greater on the hydroponic system than in well-fertilized, irrigated sandy-loam soil when planting pattern and density were the same. Maximum aboveground dry matter and grain dry matter on the hydroponic system were 25.8 and 12.2 Mg ha−1, respectively. It is apparent that there is a soil-based constraint that limits aboveground dry-matter production to 75–85% of the potential with the aboveground environment in the region. Grain yield appears to be limited to a lesser extent. To determine the effect of root-medium temperature, growth in pails buried in the soil was compared to that in soil and in pails placed on the soil surface. Although the temperature of the buried pails was consistently lower than that in the aboveground pails and in the soil, dry matter accumulation was similar to that in the aboveground pails indicating that soil temperature was not a cause of the lower yield of the soil-grown plants. There was no evidence that plants growing on the highly fertilized soil were nutrient limited at any growth stage. Other studies have indicated that transient water stress on soil-grown plants will not explain the difference in growth on the two systems. Key words: Maize, hydroponics, soil limitations, soil temperature, nutrition


2021 ◽  
Author(s):  
Yafang Fan ◽  
Julin Gao ◽  
Jiying Sun ◽  
Jian Liu ◽  
Zhijun Su ◽  
...  

Abstract Maize (Zea mays L.) is considered one of the most important grains in the world. Straw return and potassium fertilization can enhance the maize yield. Therefore, three field experiments were carried out in the three years (2018–2020) to study the effects of straw return at two methods and four levels of potassium fertilization on photosynthesis, dry matter accumulation and yield of the maize ‘Xianyu 335’. To conduct the field trials, a split plot system in five replications was established. Two straw return methods (straw return with deep tillage and straw mulching with no tillage) were in the main plots, and four potassium fertilization levels (0, 30, 45 and 60 kg/ha) were in the subplots. Each sub-plot consisted of 10 rows with 5 m length and 0.6 m width, and each sub-plot area was 30 m2 in the three years. The results indicated that the straw return methods and the potassium supply significantly affected the maize photosynthesis, dry matter accumulation and yield in the three years. Under the same potassium supply, straw return with deep tillage significantly improved the maize photosynthesis, dry matter accumulation and yield compared to straw mulching with no tillage. The above characteristics improved with increased potassium supply. The treatment of SFK60 recorded the highest values for the parameters of maize photosynthesis, dry matter accumulation and yield during the three harvest seasons. The treatment of SFK45 reached maximum profit of maize planting, which was 12088.77 yuan/ha. Therefore, SFK45 was an effective way to ensure the stable and higher yields of maize and to maximize the income of farmers.


Author(s):  
Suhail Fayaz ◽  
Raihana Habib Kanth ◽  
Tauseef Ahmad Bhat ◽  
M. Anwar Bhat ◽  
Bashir Ahmad Alie ◽  
...  

Field experiment was conducted at Faculty of Agriculture, SKUAST-Kashmir, Wadura, Jammu and Kashmir during kharif seasons of 2019 and 2020 to assess the effect of precision nitrogen management through LCC on nutrient content and uptake of maize (Zea mays L.) under temperate conditions of Kashmir. The experiment comprised of three maize hybrids (SMH-2, Vivek-45 and Kanchan-517) assigned to main plots and seven Precision N management viz. nitrogen splits @ 20 and 30 kg N ha-1 managed through LCC (LCC scores of 3, 4 and 5), recommended nitrogen level and control in subplots. The treatments were replicated thrice in a split plot design. The results revealed that LCC ≤ 5 @ 30 kg N ha-1 recorded highest dry matter accumulation and periodic N uptake at all the stages of growth and highest P and K uptake by grain and straw at harvest. Further, highest dry matter accumulation and uptake of NPK was recorded in cultivar SMH-2 as compared to Vivek-45 and Kanchan-517 during 2019 and 2020 respectively. LCC based N application proved effective in increasing dry matter and nutrient content of maize hybrids.


Author(s):  
V. K. Meena ◽  
B. P. Meena ◽  
G. S. Chouhan ◽  
B. L. Meena

A field experiment was carried out during summer seasons of two consecutive years 2010 and 2011 to assess the effect of irrigation levels and agrochemicals. Application of eight irrigations (at seedling, six leaf, knee-high, before tasseling, 50% tasseling, 50% silking, grain formation and grain filling stages) significantly improved plant height at harvest over rest of irrigation treatments during both the years. On pooled mean basis, the magnitude of increase in plant height at harvest due to eight irrigations was in the order of 28.41, 18.49, 10.96 and 4.31 per cent over four, five, six and seven irrigations, respectively. Dry matter accumulation at 50 Day after sowing and at harvest significantly improved with eight and seven irrigations over four, five and six irrigations during both the years of the study.


2019 ◽  
Vol 238 ◽  
pp. 129-138 ◽  
Author(s):  
V. Hugo Gonzalez ◽  
Elizabeth A. Lee ◽  
L. Lewis Lukens ◽  
Clarence J. Swanton

Sign in / Sign up

Export Citation Format

Share Document