scholarly journals GROWTH AND YIELD OF MAIZE (Zea mays L.) GROWN OUTDOORS HYDROPONICALLY AND IN SOIL

1989 ◽  
Vol 69 (2) ◽  
pp. 295-302 ◽  
Author(s):  
M. H. MILLER ◽  
G. K. WALKER ◽  
M. TOLLENAAR ◽  
K. G. ALEXANDER

Maize (Zea mays L.) was grown outdoors hydroponically and in soil to compare yields in the two systems and to determine the extent to which soil temperature and plant nutrition limit yield of soil-grown plants. The hydroponic system consisted of 22.5-L plastic pails filled with "Turface" to which nutrient solution was added at least twice daily. In all 3 yr dry-matter accumulation throughout the growing season was greater on the hydroponic system than in well-fertilized, irrigated sandy-loam soil when planting pattern and density were the same. Maximum aboveground dry matter and grain dry matter on the hydroponic system were 25.8 and 12.2 Mg ha−1, respectively. It is apparent that there is a soil-based constraint that limits aboveground dry-matter production to 75–85% of the potential with the aboveground environment in the region. Grain yield appears to be limited to a lesser extent. To determine the effect of root-medium temperature, growth in pails buried in the soil was compared to that in soil and in pails placed on the soil surface. Although the temperature of the buried pails was consistently lower than that in the aboveground pails and in the soil, dry matter accumulation was similar to that in the aboveground pails indicating that soil temperature was not a cause of the lower yield of the soil-grown plants. There was no evidence that plants growing on the highly fertilized soil were nutrient limited at any growth stage. Other studies have indicated that transient water stress on soil-grown plants will not explain the difference in growth on the two systems. Key words: Maize, hydroponics, soil limitations, soil temperature, nutrition

1988 ◽  
Vol 68 (4) ◽  
pp. 935-940 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. W. BRUULSEMA

The response of rate and duration of kernel dry matter accumulation to temperatures in the range 10–25 °C was studied for two maize (Zea mays L.) hybrids grown under controlled-environment conditions. Kernel growth rates during the period of linear kernel growth increased linearly with temperature (b = 0.3 mg kernel−1 d−1 °C−1). Kernel dry weight at physiological maturity varied little among temperature treatments because the increase in kernel growth rate with increase in temperature was associated with a decline in the duration of kernel growth proportional to the increase in kernel growth rate.Key words: Zea mays L, period of linear kernel dry matter accumulation, controlled-environment conditions, kernel growth rate


2013 ◽  
Vol 18 (1) ◽  
pp. 53 ◽  
Author(s):  
Wahyu Astiko ◽  
Ika Rochdjatun Sastrahidayat ◽  
Syamsuddin Djauhari ◽  
Anton Muhibuddin

A glass house study was conducted to evaluate the contribution of indigenous arbuscular mycorrhiza fungi (AMF) in improving maize yield grown on sandy loam of Northern Lombok. The package of organic fertilizers treatments were tested including: without inoculation of mycorrhiza, inoculation mycorrhiza and no added inorganic fertilizers, inoculation of mycorrhiza with cattle manure added, inoculation of mycorrhiza with rock phosphate added and inoculation mycorrhiza with inorganic fertilizers. The treatments were arranged using a Completely Randomized Design with four replications. The results of the study show that the inoculation of AMF significantly increased soil concentration of N, available-P, K and organic-C by 37.39%, 60.79%, 66.66% and 110.15% respectively observed at 60 days after sowing (DAS). The similar trend was also found at 100 DAS, where those nutrients increased by 21.48%, 69%, 43.93% and 37.07%, respectively compared to control. The improving of soil fertility status was also reflected by nutrients uptake (i.e. N, P, K, Ca) as well as growth and yield of maize. N, P, K and Ca uptake increased by 1,608%, 1,121%, 533% and 534%, respectively. Roots and top dry biomass at 60 DAS increased by 718.40% and 337.67%, respectively. The trend increased of the biomass was followed by observation at 100 DAS. Yield components including cobs, grain and weight of 100 grains increased by 313.60%, 411.84% and 137.54%, respectively. In addition, the inoculation of AM with F2 contributed significantly to the spore numbers and root infection.[How to Cite : Astiko W, IR Sastrahidayat, S Djauhari, and A Muhibuddin. 2013. The Role of Indigenous Mycorrhiza in Combination with Cattle Manure in Improving Maize Yield (Zea Mays L) on Sandy Loam of Northern Lombok, Eastern of Indonesia. J Trop Soils, 18 (1): 53-58. doi: 10.5400/jts.2013.18.1.53][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.1.53]


Crop Science ◽  
1965 ◽  
Vol 5 (4) ◽  
pp. 365-367 ◽  
Author(s):  
C. O. Grogan ◽  
Patricia Sarvella ◽  
J. O. Sanford ◽  
H. V. Jordan

Author(s):  
Suhail Fayaz ◽  
Raihana Habib Kanth ◽  
Tauseef Ahmad Bhat ◽  
M. Anwar Bhat ◽  
Bashir Ahmad Alie ◽  
...  

Field experiment was conducted at Faculty of Agriculture, SKUAST-Kashmir, Wadura, Jammu and Kashmir during kharif seasons of 2019 and 2020 to assess the effect of precision nitrogen management through LCC on nutrient content and uptake of maize (Zea mays L.) under temperate conditions of Kashmir. The experiment comprised of three maize hybrids (SMH-2, Vivek-45 and Kanchan-517) assigned to main plots and seven Precision N management viz. nitrogen splits @ 20 and 30 kg N ha-1 managed through LCC (LCC scores of 3, 4 and 5), recommended nitrogen level and control in subplots. The treatments were replicated thrice in a split plot design. The results revealed that LCC ≤ 5 @ 30 kg N ha-1 recorded highest dry matter accumulation and periodic N uptake at all the stages of growth and highest P and K uptake by grain and straw at harvest. Further, highest dry matter accumulation and uptake of NPK was recorded in cultivar SMH-2 as compared to Vivek-45 and Kanchan-517 during 2019 and 2020 respectively. LCC based N application proved effective in increasing dry matter and nutrient content of maize hybrids.


Author(s):  
V. K. Meena ◽  
B. P. Meena ◽  
G. S. Chouhan ◽  
B. L. Meena

A field experiment was carried out during summer seasons of two consecutive years 2010 and 2011 to assess the effect of irrigation levels and agrochemicals. Application of eight irrigations (at seedling, six leaf, knee-high, before tasseling, 50% tasseling, 50% silking, grain formation and grain filling stages) significantly improved plant height at harvest over rest of irrigation treatments during both the years. On pooled mean basis, the magnitude of increase in plant height at harvest due to eight irrigations was in the order of 28.41, 18.49, 10.96 and 4.31 per cent over four, five, six and seven irrigations, respectively. Dry matter accumulation at 50 Day after sowing and at harvest significantly improved with eight and seven irrigations over four, five and six irrigations during both the years of the study.


2019 ◽  
Vol 238 ◽  
pp. 129-138 ◽  
Author(s):  
V. Hugo Gonzalez ◽  
Elizabeth A. Lee ◽  
L. Lewis Lukens ◽  
Clarence J. Swanton

Sign in / Sign up

Export Citation Format

Share Document