Digestibility of Gross Nutrients by Sunshine Bass in Animal By-Products and Commercially Blended Products Used as Fish Meal Replacements

2006 ◽  
Vol 68 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Steven D. Rawles ◽  
T. Gibson Gaylord ◽  
Delbert M. Gatlin
2019 ◽  
Vol 6 ◽  
Author(s):  
Fereidoon Shahidi ◽  
Vamadevan Varatharajan ◽  
Han Peng ◽  
Ruchira Senadheera

The world fisheries resources have exceeded 160 million tons in recent years. However, every year a considerable amount of total catch is discarded as by-catch or as processing leftovers, and that includes trimmings, fins, frames, heads, skin, viscera and among others. In addition, a large quantity of processing by-products is accumulated as shells of crustaceans and shellfish from marine bioprocessing plants. Recognition of the limited marine resources and the increasing environmental pollution has emphasized the need for better utilization of the by-products. Marine by-products contain valuable protein and lipid fractions, minerals, enzymes as well as many other components. The major fraction of by-products are used for feed production—in making fish meal/oil, but this has low profitability. However, there are many ways in which the fish and shellfish waste could be better utilized, including the production of novel food ingredients, nutraceuticals, pharmaceuticals, biomedical materials, fine chemicals, and other value-added products. In recent times, much research is conducted in order to explore the possible uses of different by-products. This contribution primarily covers the characteristics and utilization of the main ingredients such as protein, lipid, chitin and its derivatives, enzymes, carotenoids, and minerals originating from marine by-products.


1980 ◽  
Vol 3 ◽  
pp. 85-90 ◽  
Author(s):  
I. H. Pike ◽  
I. N. Tatterson

Most of the by-products from fish go into the production of fish meal and fish oil, the latter going directly to the human food chain, and therefore do not really come under the heading of industrial by-products and waste per se. Broadly speaking, fish meal made from fish offal is a by-product which otherwise would have been wasted. This paper discusses the quantities involved and the nutritional properties offish meal, and in addition, the contribution to fish meal and fish oil made from species which are not suitable for human consumption (e.g. sandeels) or where the quantities caught exceed the demand for human consumption (e.g. sprats).Any method of utilizing fish by-products for animal feeding should minimize chemical changes in the product to avoid reduction in the nutrients which are present at the time of catching. In some respects chemical changes in fish by-products are brought about in a similar way to those in grass, cut for preservation. The fish material has a high water content, around 75%, and from the time of catching is subject to chemical changes by enzymes in the fish and also by bacterial action. Fish, however, differs from grass in that it contains oil and virtually no carbohydrates. The demersal, or lean fish, for example, cod, haddock, plaice, saithe, etc., contain high levels of oil in the liver which are removed for separate processing, but little in the flesh and in the offal produced. The ‘industrial’ fish caught are mainly pelagic species with high levels of oil in the flesh.


1992 ◽  
Vol 55 (2) ◽  
pp. 277-284 ◽  
Author(s):  
F. J. Moyano ◽  
G. Cardenete ◽  
M. de la Higuera

AbstractTwo experiments were designed to test the possibility of partially replacing fish-meal protein in rainbow trout either with maize-gluten meal (MGM) (experiment 1) or potato protein concentrate (PPC) (experiment 2). Rainbow trout (Oncorhynchus mykiss) 30 g initial average weight were given diets containing different levels of MGM or PPC proteins ranging from 0 to 0·4 or to 0·6 of dietary protein, respectively. Substitutions of fish meal either by MGM or PPC were carried out establishing two different total dietary protein levels; 350 and 450 g/kg. Results showed that the MGM diets were acceptable and gave a significant enhancement (over 0·37 in the better case) in nutrient utilization when compared with those including only fish meal. On the contrary, diets including PPC were poorly accepted, and the growth offish and nutrient utilization were negatively correlated with dietary levels of PPC. It is concluded that levels of MGM representing around 400 g/kg diet can be used in foods for rainbow trout, whereas PPC appears not to be a suitable protein source for those fish.


2019 ◽  
Vol 6 ◽  
Author(s):  
Fereidoon Shahidi ◽  
Vamadevan Varatharajan ◽  
Han Peng ◽  
Ruchira Senadheera

The world fisheries resources have exceeded 160 million tons in recent years. However, every year a considerable amount of total catch is discarded as by-catch or as processing leftovers, and that includes trimmings, fins, frames, heads, skin, viscera and among others. In addition, a large quantity of processing by-products is accumulated as shells of crustaceans and shellfish from marine bioprocessing plants. Recognition of the limited marine resources and the increasing environmental pollution has emphasized the need for better utilization of the by-products. Marine by-products contain valuable protein and lipid fractions, minerals, enzymes as well as many other components. The major fraction of by-products are used for feed production—in making fish meal/oil, but this has low profitability. However, there are many ways in which the fish and shellfish waste could be better utilized, including the production of novel food ingredients, nutraceuticals, pharmaceuticals, biomedical materials, fine chemicals, and other value-added products. In recent times, much research is conducted in order to explore the possible uses of different by-products. This contribution primarily covers the characteristics and utilization of the main ingredients such as protein, lipid, chitin and its derivatives, enzymes, carotenoids, and minerals originating from marine by-products.


2014 ◽  
Vol 13 (4) ◽  
pp. 234-238 ◽  
Author(s):  
M.M. Manzoor ◽  
M.Z. Alam ◽  
Z.I. Chauhan ◽  
S.A.H. Gilani ◽  
S.T.H. Shah ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document