scholarly journals Kinetic instability of a chitosan – aspartic acid – water system as a method for obtaining nano- and microparticles

2021 ◽  
Vol 8 (4) ◽  
pp. 20218405
Author(s):  
T. N. Lugovitskaya ◽  
A. B. Shipovskaya ◽  
X. M. Shipenok

The specific electrical conductivity and dielectric constant of aqueous solutions of ionic aminopolysaccharide chitosan in L-aspartic acid were investigated. An increase of the mobility of charge carriers in these solutions was found in comparison with solutions of an individual acid. The evaluation of the kinetic stability revealed that the viscosity, electrical conductivity and dielectric constant of the chitosan – L-aspartic acid – water system decrease, while the pH value increases. It was shown that the time variation of physicochemical and electrochemical parameters is due to the effects of counterionic association with the transition of macromolecules to the ionomeric state and is accompanied by phase segregation of the polymer phase in the form of nano- and microparticles. The conducted studies carried out have shown the fundamental possibility of controlling the metastable state of this system in order to obtain nano- and microparticles.

Author(s):  
S. A. Syrbu ◽  
M. S. Fedorov ◽  
E. A. Lapykina ◽  
V. V. Novikov

Objectives. Our aim was to study the dielectric properties of the 4-n-pentyloxybenzoic acid– N-(4-n-butyloxybenzylidene)-4’-methylaniline system and reveal how different concentrations of N-(4-n-butyloxybenzylidene)-4’-methylaniline additives affect the dielectric properties of 4-n-pentyloxybenzoic acid.Methods. System properties were investigated using polarization thermomicroscopy and dielcometry.Results. We found that dielectric anisotropy changes its sign from positive to negative at the transition temperature of the high-temperature nematic subphase to the low-temperature one. The anisotropy of the dielectric constant of N-4-n-butoxybenzylidene-4’-methylaniline has a positive value and increases as to the system approaches the crystalline phase. The crystal structure of the 4-n-pentyloxybenzoic acid contains dimers formed by two independent molecules due to a pair of hydrogen bonds. The crystal structure of N-(4-n-butoxybenzylidene)-4’-methylaniline contains associates formed by orientational interactions of two independent molecules. 4-n-Pentyloxybenzoic acid dimers (270 nm) and associates of N-4-n-butoxybenzylidene-4’- methylaniline (250 nm) proved to have approximately the identical length. Considering the close length values of the structural units of both compounds and the dielectric anisotropy sign, we assume that the N-4-n-butoxybenzylidene-4’-methylaniline associates are incorporated into the supramolecular structure of the 4-n-pentyloxybenzoic acid. The specific electrical conductivity of the compounds under study lies between 10−7 and 10−12 S∙cm−1. The relationship between the specific electrical conductivity anisotropy and the system composition in the nematic phase at the identical reduced temperature, obtained between 100 and 1000 Hz is symbatic. However, the electrical conductivity anisotropy values of the system obtained at 1000 Hz are lower compared to those obtained at 100 Hz. At N-(4-n-butoxybenzylidene)-4’-methylaniline concentrations between 30 and 60 mol %, the electrical conductivity anisotropy values are higher than those of the individual component.Conclusions. A change in the sign of the dielectric constant anisotropy of the 4-n-pentyloxybenzoic acid during nematic subphase transitions was established. We showed that the system has the highest dielectric constant anisotropy value when components have an equal number of moles. Highest electrical conductivity anisotropy values are observed when the concentration of the N-4-n-butoxybenzylidene-4᾽-methylaniline system lies between 30 and 60 mol %. 


1987 ◽  
Vol 33 (114) ◽  
pp. 239-242
Author(s):  
M. E. R. Walford

AbstractWe discuss the suggestion that small underwater transmitters might be used to illuminate the interior of major englacial water channels with radio waves. Once launched, the radio waves would naturally tend to be guided along the channels until attenuated by absorption and by radiative loss. Receivers placed within the channels or at the glacier surface could be used to detect the signals. They would provide valuable information about the connectivity of the water system. The electrical conductivity of the water is of crucial importance. A surface stream on Storglaciären, in Sweden, was found, using a low-frequency technique, to have a conductivity of approximately 4 × 10−4 S m−1. Although this is several hundred times higher than the conductivity of the surrounding glacier ice, the contrast is not sufficient to permit us simply to use electrical conductivity measurements to establish the connectivity of englacial water channels. However, the water conductivity is sufficiently small that, under favourable circumstances, radio signals should be detectable after travelling as much as a few hundred metres along an englacial water channel. In a preliminary field experiment, we demonstrated semi quantitatively that radio waves do indeed propagate as expected, at least in surface streams. We conclude that under-water radio transmitters could be of real practical value in the study of the englacial water system, provided that sufficiently robust devices can be constructed. In a subglacial channel, however, we expect the radio range would be much smaller, the environment much harsher, and the technique of less practical value.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2518
Author(s):  
Dorota Kołodyńska ◽  
Yongming Ju ◽  
Małgorzata Franus ◽  
Wojciech Franus

The possibility of application of chitosan-modified zeolite as sorbent for Cu(II), Zn(II), Mn(II), and Fe(III) ions and their mixtures in the presence of N-(1,2-dicarboxyethyl)-D,L-aspartic acid, IDHA) under different experimental conditions were investigated. Chitosan-modified zeolite belongs to the group of biodegradable complexing agents used in fertilizer production. NaP1CS as a carrier forms a barrier to the spontaneous release of the fertilizer into soil. The obtained materials were characterized by Fourier transform infrared spectroscopy (FTIR); surface area determination (ASAP); scanning electron microscopy (SEM-EDS); X-ray fluorescence (XRF); X-ray diffraction (XRD); and carbon, hydrogen, and nitrogen (CHN), as well as thermogravimetric (TGA) methods. The concentrations of Cu(II), Zn(II), Mn(II), and Fe(III) complexes with IDHA varied from 5–20 mg/dm3 for Cu(II), 10–40 mg/dm3 for Fe(III), 20–80 mg/dm3 for Mn(II), and 10–40 mg/dm3 for Zn(II), respectively; pH value (3–6), time (1–120 min), and temperature (293–333 K) on the sorption efficiency were tested. The Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin adsorption models were applied to describe experimental data. The pH 5 proved to be appropriate for adsorption. The pseudo-second order and Langmuir models were consistent with the experimental data. The thermodynamic parameters indicate that adsorption is spontaneous and endothermic. The highest desorption percentage was achieved using the HCl solution, therefore, proving that method can be used to design slow-release fertilizers.


1956 ◽  
Vol 48 (4) ◽  
pp. 816-816
Author(s):  
C. H. Duffy ◽  
W. H. Corcoran ◽  
B. H. Sage

2018 ◽  
Vol 42 (1) ◽  
pp. 11-23
Author(s):  
Mohammad Asadul Haque

The spatial variability of salt accumulation through the soil profile was studied at Latachapali union of Kalapara upazila, Patuakhali district, Bangladesh. The soil samples were collected from 30 locations covering six villages of the union: Kuakata, Malapara, Fashipara, Khajura, Mothaopara and Tajepara. Five locations were randomly selected from each village. From each location soil samples were collected from three soil depths at 0-2 cm, 2.1-4 cm and 4.1-6 cm. Electrical conductivity of top 0-2 cm soil depth was 20.49 dS/m, in 2.1-4 cm soil depth was 7.14 dS/m and in 4.1-6 cm soil depth 4.15 dS/m. The study soils were strongly acidic having pH value 4.73, 4.99 and 5.20 in 0-2, 2.1-4 and 4.1-6 cm soil depth, respectively. The highest of 8.8 Na:K ratio was found in 0-2 cm soil depth. The Na:K ratio gradually decreased with the increase of soil depth, having 6.59 in 2.1-4 cm and 5.42. in 4.1-6 cm soil depth. The results clearly reveal that the top soil is very much sensitive to salt stress. Based on the electrical conductivity and Na:K ratio the Fashipara, Kuakata and Tajepara village were found seriously affected by salinity.Journal of Bangladesh Academy of Sciences, Vol. 42, No. 1, 11-23, 2018


2017 ◽  
Vol 33 (3) ◽  
pp. 369-378 ◽  
Author(s):  
Brett A Zimmerman ◽  
Amy L Kaleita

Abstract. Assessing the effectiveness of management strategies to reduce agricultural nutrient efflux is hampered by the lack of affordable, continuous monitoring systems. Generalized water quality monitoring is possible using electrical conductivity. However environmental conditions can influence the ionic ratios, resulting in misinterpretations of established electrical conductivity and ionic composition relationships. Here we characterize specific electrical conductivity (k25) of agricultural drainage waters to define these environmental conditions and dissolved constituents that contribute to k25. A field investigation revealed that the magnitude of measured k25 varied from 370 to 760 µS cm-1. Statistical analysis indicated that variability in k25 was not correlated with drainage water pH, temperature, nor flow rate. While k25 was not significantly different among drainage waters from growing and post-growing season, significant results were observed for different cropping systems. Soybean plots in rotation with corn had significantly lower conductivities than those of corn plots in rotation with soybeans, continuous corn plots, and prairie plots. In addition to evaluating k25 variability, regression analysis was used to estimate the concentration of major ions in solution from measured k25. Regression results indicated that HCO3-, Ca2+, NO3-, Mg2+, Cl-, Na2+, SO42- were the major drainage constituents contributing to the bulk electrical conductivity. Calculated ionic molal conductivities of these analytes suggests that HCO3-, Ca2+, NO3-, and Mg2+ account for approximately 97% of the bulk electrical conductivity. Keywords: Electrical conductivity, Salinity, Subsurface drainage, Total dissolved solids.


1991 ◽  
Vol 24 (5) ◽  
pp. 1161-1167 ◽  
Author(s):  
Yachin Cohen ◽  
Yasuo Saruyama ◽  
Edwin L. Thomas

Sign in / Sign up

Export Citation Format

Share Document