scholarly journals Detecting Cycle Slips in Carrier-Phase Measurements of Single Frequency Navigation Receivers with Different Instabilities of Reference Oscillators

2021 ◽  
Vol 5 (2) ◽  
pp. 144-161
Author(s):  
A. S. Pustoshilov ◽  
◽  
S. P. Tsarev ◽  

The use of carrier-phase measurements significantly increases the accuracy of solutions when using the measurements of navigation receivers. One of the problems in carrier-phase measurements is discontinuities (cycle slips) in the measurements. The existing algorithms of detection and compensation of cycle slips in carrier-phase measurements of a singlefrequency navigation receiver either require additional information (for example, Doppler measurements), or operate only in differential mode, or can only detect large cycle slips. The purpose of the research is the development of algorithms for detecting small cycle slips in carrier-phase measurements of single-frequency receivers without using additional information. We use methods of filtering of the trend in the carrier-phase measurements using polynomial or adaptive bases, as well as modified sparse recovery algorithms to estimate cycle slips in the difference between code and carrier-phase measurements. The algorithm which is used to search cycle slips in carrier-phase measurements depends on the quality of the reference oscillator of the navigation receiver. For receivers with high-stability reference oscillators (e.g. active hydrogen maser), one can use polynomial filtering of the trend, the filtering result directly detects discontinuities in carrier-phase measurements with a probability close to unity. For navigation receivers with low-stability reference oscillators (quartz reference oscillators), a modified algorithm for minimization of the total variation with filtering of the trend applied to the difference between the code and carrier-phase single-frequency measurements detects discontinuities in 1 cycle slip against the background of the noise component of comparable magnitude with a probability of 0.8. The results may be applied in navigation systems with single-frequency receivers with low stability reference oscillators, as well as in a posteriori processing of receivers’ measurements to correct carrier-phase measurements on the preprocessing stage.

2003 ◽  
Vol 56 (3) ◽  
pp. 475-486 ◽  
Author(s):  
Hung-Kyu Lee ◽  
Jinling Wang ◽  
Chris Rizos

To ensure high accuracy results from an integrated GPS/INS system, the carrier phase observables have to be used to update the filter's states. As a prerequisite the integer ambiguities must be resolved before using carrier phase measurements. However, a cycle slip that remains undetected (and uncorrected) will significantly degrade the filter's performance. In this paper, an algorithm that can effectively detect and identify any type of cycle slip is presented. The algorithm uses additional information provided by the INS, and applies a statistical technique known as the cumulative-sum (CUSUM) test. In this approach, cycle slip decision values can be computed from the INS-predicted position (due to the fact that its short-term accuracy is very high), and the CUSUM test used to detect cycle slips (as it is very sensitive to abrupt changes of mean values). Test results are presented to demonstrate the effectiveness of the proposed algorithm.


Author(s):  
Aleksandr Pustoshilov

The paper shows a simple method for detecting cycle slips in the carrier-phase measurements (including single frequency measurements) of navigation receivers with highly stable (hydrogen) reference oscillators by using approximation by high-degree polynomials.


2021 ◽  
Vol 13 (9) ◽  
pp. 1621
Author(s):  
Duojie Weng ◽  
Shengyue Ji ◽  
Yangwei Lu ◽  
Wu Chen ◽  
Zhihua Li

The differential global navigation satellite system (DGNSS) is an enhancement system that is widely used to improve the accuracy of single-frequency receivers. However, distance-dependent errors are not considered in conventional DGNSS, and DGNSS accuracy decreases when baseline length increases. In network real-time kinematic (RTK) positioning, distance-dependent errors are accurately modelled to enable ambiguity resolution on the user side, and standard Radio Technical Commission for Maritime Services (RTCM) formats have also been developed to describe the spatial characteristics of distance-dependent errors. However, the network RTK service was mainly developed for carrier-phase measurements on professional user receivers. The purpose of this study was to modify the local-area DGNSS through the use of network RTK corrections. Distance-dependent errors can be reduced, and accuracy for a longer baseline length can be improved. The results in the low-latitude areas showed that the accuracy of the modified DGNSS could be improved by more than 50% for a 17.9 km baseline during solar active years. The method in this paper extends the use of available network RTK corrections with high accuracy to normal local-area DGNSS applications.


2019 ◽  
Vol 13 ◽  
pp. 174830181983304
Author(s):  
Hangshuai Ma ◽  
Rong Wang ◽  
Zhi Xiong ◽  
Jianye Liu ◽  
Chuanyi Li

The application of Beidou Satellite Navigation System (BDS) is developing rapidly. To satisfy the increasing demand for positioning performance, single-frequency precise point positioning (SFPPP) has been a focus in recent years. By introducing the SFPPP technique into the INS/BDS integrated system, higher navigation accuracy can be obtained. Cycle slip, which is caused by signal blockage during the measurement of the carrier phase, is a challenge for SFPPP application. In the INS/SFPPP-BDS integrated system, cycle slip can cause serious bias in BDS carrier phase measurements. In this paper, a new INS/SFBDS-PPP tightly coupled navigation system and a robust adaptive filtering method are proposed. Using a low-cost single-frequency receiver integrated with INS, an observation model was built based on the pseudo range and carrier phase by PPP preprocessing. The cycle slip was introduced into the state vector to improve the estimation precision. The test statistics, comprising the innovation and its covariance, were used to estimate the time at which cycle slip occurred and its amplitude to compensate for its effect on the observation. Finally, the proposed system model and algorithm are validated by simulation.


2021 ◽  
Author(s):  
Abdulla Al-Naqbi

Positioning using low-cost, single-frequency GPS receivers provides an economical solution, but these receivers are subject to biases leading to degradation of the accuracy required. Factors contributing to degradation in the accuracy of low-cost systems are ionospheric delay, multipath, and measurement noise. Unless carefully addressed, these errors distort the ambiguity resolution process, and result in less accurate positioning solutions. However, with the modern hardware improvements, measurement noise is now almost neglibible. Ionospheric delay has been dramatically reduced with the availablity of global or local ionospheric maps produced by various organizations (e.g., International GNSS Service (IGS), and National Oceanic and Atmospheric Administraion (NOAA). The major remaining constraint and challenging problem is multipath. This is because mulitpath is environmentally dependant, difficult to model mathematically, and cannot be reduced through differential positioning. The research proposes a new approach to identify multipath-contaminated L1 measurements. The approach is based on wavelet analysis using Daubechies family wavelets. First, the difference between the code and carrier phase measurements was estimated, leaving essentially twice the ionospheric delay, multipath and system noise. The ionospheric delay is largely removed by using high resolution ionospheric delay maps produced by NOAA. The remaining residuals contain mainly low-frequency multipath, if existed, and high-frequency part of the residual component described above. The L1 measurements obtaines from the staellites with lowest multipath were used to compute the final positions using Trimble Total Control (TTC) and Bernese scientific processing software packages. The AC12 single-frequency GPS receiver was extensively tested in static and kinematic modes. Accuracies within 5 cm was demostrated for baselines up to 65 km under various multipath environments.


Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 304 ◽  
Author(s):  
Salma Zainab Farooq ◽  
Dongkai Yang ◽  
Echoda Ngbede Joshua Ada

Single frequency real-time kinematic (RTK) positioning is expected to be the leading implementation platform for a variety of emerging GNSS mass-market applications. During RTK positioning, the most common source of measurement errors is carrier-phase cycle slips (CS). The presence of CS in carrier-phase measurements is tested by a CS detection technique and correspondingly taken care of. While using CS prone measurement data, positioning reliability is an area of concern for RTK users. Reliability can be linked with the CS detection scheme through a least squares (LS) adjustment process. This paper proposes a CS detection framework for reliable RTK positioning using single-frequency GNSS receivers. The scheme uses double differenced measurements for CS detection via LS adjustment using a detection, identification, and adaptation approach. For reliable positioning, the procedure to link the detection and identification stages is described. Through tests conducted on kinematic data, internal and external reliability are theoretically determined by calculating minimal detectable bias (MDB) and marginally detectable errors, respectively. After introducing CS, the actual values of MDB are found to be four cycles, which are higher than the theoretically obtained values of one and two cycles. Although CS detection for reliable positioning is implemented for single-frequency RTK users, the proposed procedure is generic and can be used whenever CS are detected through statistical tests during LS adjustment.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Shaohua Chen ◽  
Yang Gao

Carrier phase measurements are essential to high precision positioning. Usually, the carrier phase measurements are generated from the phase lock loop in a conventional Global Navigation Satellite System (GNSS) receiver. However there is a dilemma problem to the design of the loop parameters in a conventional tracking loop. To address this problem and improve the carrier phase tracking sensitivity, a carrier phase tracking method based on a joint vector architecture is proposed. The joint vector architecture contains a common loop based on extended Kalman filter to track the common dynamics of the different channels and the individual loops for each channel to track the satellite specific dynamics. The transfer function model of the proposed architecture is derived. The proposed method and the conventional scalar carrier phase tracking are tested with a high quality simulator. The test results indicate that carrier phase measurements of satellites start to show cycle slips using the proposed method when carrier noise ratio is equal to and below 15 dB-Hz instead of 21 dB-Hz with using the conventional phase tracking loop. Since the joint vector based tracking loops jointly process the signals of all available satellites, the potential interchannel influence between different satellites is also investigated.


2010 ◽  
Vol 63 (2) ◽  
pp. 301-312 ◽  
Author(s):  
Abdulla Alnaqbi ◽  
Ahmed El-Rabbany

Low-cost, single-frequency GPS systems provide economical positioning solutions to many geomatics applications, including GIS and low-accuracy surveying applications. Unfortunately however, the positioning accuracy obtained with those systems is not sufficient for many surveying applications. This is mainly due to the presence of ionospheric delay and multipath. In this research ionospheric delay is accounted for using regional high-resolution ionospheric maps produced by the US National Oceanic and Atmospheric Administration (NOAA). The major remaining constraint and challenging problem is multipath. This is because multipath is environmentally-dependent, difficult to model mathematically and cannot be reduced through differential positioning. This research proposes a new approach to identify multipath-contaminated L1 measurements through wavelet analysis. First, the difference between the code and carrier-phase measurements is estimated, leaving essentially twice the ionospheric delay, multipath and system noise. The ionospheric delay is largely removed by using high-resolution ionospheric delay maps produced by NOAA. The remaining residuals contain mainly low-frequency multipath, if it exists, and high-frequency system noise, which are decomposed using Daubechies family wavelets (db8). A satellite signal is identified as contaminated by multipath based on the standard deviation of the low-frequency part of the residual component. The L1 measurements obtained from the satellites with the lowest multipath are used to compute the final positions using two software packages, namely Trimble Total Control (TTC) and Bernese scientific processing software. The Magellan AC12 low-cost single-frequency GPS receiver was extensively tested in static mode. It is shown that accuracies within 5 cm are routinely obtained for baselines up to 65 km under various multipath environments.


Sign in / Sign up

Export Citation Format

Share Document