scholarly journals Genetic Variability in a Set of Early Maize Inbred Lines

Author(s):  
Voichita HAS ◽  
Rodica POP ◽  
Ioan HAS ◽  
Ana COPANDEAN

Characterization of genetic variability among maize inbred lines can facilitate organization of germplasm and improve efficiency of breeding programs. A set of 83 phenotypically diverse inbred maize lines maintained in Agricultural Research and Development Station (ARDS), Turda, Romania was characterized by pedigree, phenotypically using 14 characters of the plant and ear and genetic with RFLP markers. The objective of this study was to characterize the genetic variability and to define the potential heterotic groups based on clusters formed with marker data. Inbred lines were grouped by their phenotypic differences index in twenty classes. Both the phenotypic and molecular markers analysis indicated high genetic variability and also allowed the separation of the germplasm into group of genetic similarity. The result suggested that the inbred lines analyzed could be useful in maize genetic breeding program.

Author(s):  
Mwaikonyole Zawadi ◽  
Julia Sibiya ◽  
Kingstone Mashingaidze ◽  
Assefa B Amelework ◽  
Aleck Kondwakwenda ◽  
...  

The level of genetic diversity among the available breeding materials determines the potential success of a breeding program. In this study, 92 maize inbred lines were genotyped with 3047 single nucleotide polymorphism (SNP) markers using a Kompetitive Allele-Specific Polymerase chain reaction (KASPTM) genotyping protocol. The objectives were to determine the level and pattern of genetic diversity and define potential heterotic groups of maize inbred lines developed by the Agricultural Research Council maize program of South Africa. More than 91% of the SNPs used were polymorphic with mean polymorphic information content (PIC) of 0.36. Gene diversity ranged from 0.35 to 0.37, with a mean of 0.36. Cluster analysis revealed the presence of three distinct subpopulations. Analysis of molecular variance revealed low but highly significant (p<0.0001) variations among populations, high within and among individual variations. Variation among individuals contributed 83% of the total variation, whereas variation within individuals and among populations contributed 14% and 3%, respectively. Low mean population differentiation observed in this study suggested that the inbred lines might be developed from parental genotypes with similar genetic backgrounds. The mean percentage of genetic purity among the inbred lines was 4.8, with more than 79% of the inbred lines exhibiting less than 5% heterozygosity, indicating the inbred lines are fixed. Genotypes in different clusters may be earmarked as belonging to distinct heterotic groups, and their crosses may result in better heterosis. Thus, the findings of this study set the basis for earmarking heterotic groups and parental selection.


Euphytica ◽  
2005 ◽  
Vol 142 (1-2) ◽  
pp. 97-106 ◽  
Author(s):  
M. L. Warburton ◽  
J. M. Ribaut ◽  
J. Franco ◽  
J. Crossa ◽  
P. Dubreuil ◽  
...  

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Sirlene Viana de Faria ◽  
Leandro Tonello Zuffo ◽  
Wemerson Mendonça Rezende ◽  
Diego Gonçalves Caixeta ◽  
Hélcio Duarte Pereira ◽  
...  

Abstract Background The characterization of genetic diversity and population differentiation for maize inbred lines from breeding programs is of great value in assisting breeders in maintaining and potentially increasing the rate of genetic gain. In our study, we characterized a set of 187 tropical maize inbred lines from the public breeding program of the Universidade Federal de Viçosa (UFV) in Brazil based on 18 agronomic traits and 3,083 single nucleotide polymorphisms (SNP) markers to evaluate whether this set of inbred lines represents a panel of tropical maize inbred lines for association mapping analysis and investigate the population structure and patterns of relationships among the inbred lines from UFV for better exploitation in our maize breeding program. Results Our results showed that there was large phenotypic and genotypic variation in the set of tropical maize inbred lines from the UFV maize breeding program. We also found high genetic diversity (GD = 0.34) and low pairwise kinship coefficients among the maize inbred lines (only approximately 4.00 % of the pairwise relative kinship was above 0.50) in the set of inbred lines. The LD decay distance over all ten chromosomes in the entire set of maize lines with r2 = 0.1 was 276,237 kb. Concerning the population structure, our results from the model-based STRUCTURE and principal component analysis methods distinguished the inbred lines into three subpopulations, with high consistency maintained between both results. Additionally, the clustering analysis based on phenotypic and molecular data grouped the inbred lines into 14 and 22 genetic divergence clusters, respectively. Conclusions Our results indicate that the set of tropical maize inbred lines from UFV maize breeding programs can comprise a panel of tropical maize inbred lines suitable for a genome-wide association study to dissect the variation of complex quantitative traits in maize, mainly in tropical environments. In addition, our results will be very useful for assisting us in the assignment of heterotic groups and the selection of the best parental combinations for new breeding crosses, mapping populations, mapping synthetic populations, guiding crosses that target highly heterotic and yielding hybrids, and predicting untested hybrids in the public breeding program UFV.


2018 ◽  
Vol 43 (4) ◽  
pp. 533-542
Author(s):  
Maniruzzaman ◽  
MG Azam ◽  
S Islam ◽  
MG Hossain ◽  
MM Rohman

Genetic diversity analysis and germplasm characterization are essential steps in plant breeding and molecular markers are proved tool to accomplish. The present study was undertaken at the Molecular Breeding Lab of Plant Breeding Division, Bangladesh Agricultural Research Institute (BARI) to determine the genetic relatedness and molecular characterization of 15 maize inbred lines of BARI. In present study, genetic diversity analysis was performed by using 10 SSR primers to evaluate the polymorphisms, among them six primers showed distinct polymorphism between the maize inbred lines. The maize genotypes E81, E144, E08, E167, E102, E142 and E121 were found more diverged (0.9003) compared to other inbred lines. On the other hand, the lowest genetic distance values (0.1501) were found between the genotype E140 and genotype E80 followed by genotype E126 and genotype E140; genotype E140 and genotype E65; genotype E65 and genotype E80 values were identical (0.4502). The genotypes viz. E81, E144, E08, E167, E102, E142 and E121 were found far away from centroid of the cluster and rest of the genotypes were placed around the centroid. The Principal Coordinate Analysis (PCO) helped to visualize four major clusters and showed that seven maize inbred lines (E81, E58, E08, E167, E102, E142 and E121) were far away from the other genotypes. In conclusion, SSR markers enabled discrimination among accessions and provided valuable information for future use in improvement of these genomic resources.Bangladesh J. Agril. Res. 43(4): 533-542, December 2018


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 240 ◽  
Author(s):  
Zhixin Zhao ◽  
Kunhui He ◽  
Zhiqian Feng ◽  
Yanan Li ◽  
Liguo Chang ◽  
...  

To screen the desired criterion to identify desirable genotypes and select genotypes best suited to limited nitrogen availability in order to facilitate the practice of low-nitrogen-tolerant breeding in maize, the response of 31 maize inbred lines, containing four control inbred lines (PH6WC, PH4CV, Zheng58, and Chang7-2) and others selected from the Shaan A and Shaan B heterotic groups cultivated at Northwest A&F University (Yangling, Shaanxi, China), were evaluated. The experiment was conducted following a split plot design with two replications during three growing seasons (2015, 2016, and 2017) under both high nitrogen (HN) and low nitrogen (LN) conditions at the Yulin and Yangling in Shaanxi Province, China. Seven screening indices, based on grain yield under two contrasting nitrogen (N) conditions, the stress susceptibility index (SSI), yield stability index (YSI), mean productivity (MP), geometric mean productivity (GMP), stress tolerance index (STI), harmonic mean (HM), and low nitrogen tolerance index (LNTI), were computed to assess the overall index that accurately screened the desirable genotypes. The results of the correlation analyses and principal component analysis showed that MP, GMP, HM and STI were correlated with grain yield significantly and positively under contrasting N conditions, and were able to accurately discriminate the desirable genotypes. Compared with the control inbred lines, many inbred lines selected from the Shaan A and Shaan B groups showed a higher LN tolerance. This shows that we can effectively improve the LN tolerance of maize inbred lines through LN screening. Based on the screening indices, the three-dimensional diagram and genotype and genotype × environment (GGE) biplots are agreed with this results, and we identified KA105, KB081, KA225, 91227, and 2013KB-47 as the desired genotypes that have the potential to be used to breed a high yield and stable hybrid.


2000 ◽  
Vol 119 (6) ◽  
pp. 491-496 ◽  
Author(s):  
L. L. Benchimol ◽  
C. L. de Souza jr ◽  
A. A. F. Garcia ◽  
P. M. S. Kono ◽  
C. A. Mangolin ◽  
...  

2012 ◽  
Vol 67 (5) ◽  
pp. 354-364 ◽  
Author(s):  
J. Chen ◽  
W. Xu ◽  
J. Velten ◽  
Z. Xin ◽  
J. Stout

2016 ◽  
Vol 14 (4) ◽  
pp. e0711 ◽  
Author(s):  
Sanja Mikić ◽  
Miroslav Zorić ◽  
Dušan Stanisavljević ◽  
Ankica Kondić-Špika ◽  
Ljiljana Brbaklić ◽  
...  

Drought is a severe threat to maize yield stability in Serbia and other temperate Southeast European countries occurring occasionally but with significant yield losses. The development of resilient genotypes that perform well under drought is one of the main focuses of maize breeding programmes. To test the tolerance of newly developed elite maize inbred lines to drought stress, field trials for grain yield performance and anthesis silk interval (ASI) were set in drought stressed environments in 2011 and 2012. Inbred lines performing well under drought, clustered into a group with short ASI and a smaller group with long ASI, were considered as a potential source for tolerance. The former contained inbreds from different heterotic groups and with a proportion of local germplasm. The latter consisted of genotypes with mixed exotic and Lancaster germplasm, which performed better in more drought-affected environments. Three inbreds were selected for their potential drought tolerance, showing an above-average yield and small ASI in all environments. Association analysis indicated significant correlations between ASI and grain yield and three microsatellites (bnlg1525, bnlg238 and umc1025). Eight alleles were selected for their favourable concurrent effect on yield increase and ASI decrease. The proportion of phenotypic variation explained by the markers varied across environments from 5.7% to 22.4% and from 4.6% to 8.1% for ASI and yield, respectively. The alleles with strongest effect on performance of particular genotypes and their interactions in specific environments were identified by the mean of partial least square interactions analysis indicating potential suitability of the makers for tolerant genotype selection.


Sign in / Sign up

Export Citation Format

Share Document