scholarly journals Effects of Wheat Flour Dough’s Viscoelastic Level by Adding Glucose Oxidase on its Dynamic Shear Properties whatever the Strain Modes

Author(s):  
Jean Didier Koffi Kouassi ◽  
Vlad Muresan ◽  
Sophie Nadège Gnangui ◽  
Elena Mudura ◽  
Lucien Patrice Kouame

The objective of this work was to study the effects of wheat flour dough’s viscoelastic level by adding glucose oxidase (Gox) on its rheological properties at dynamic shear strain mode to predict the final product quality. Dough does display a linear viscoelastic domain. Glucose oxidase (Gox) was added to dough in order to enhance its viscoelasticity and to take into account the possible effects of this viscoelasticity on the results. Whatever the types of dough strain used G’ increased, tan δ decreased and led to less sticky dough. Wheat flour dough, an increase in G’ with extension may be associated to a strain-hardening phenomenon but the role of dough viscoelasticity is discussed.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3969
Author(s):  
Karolina Pycia ◽  
Lesław Juszczak

The aim of the study was to assess the influence of replacing wheat flour with hazelnuts or walnuts, in various amounts, on the thermal and rheological properties of the obtained systems. The research material were systems in which wheat flour was replaced with ground hazelnuts (H) or walnuts (W) in the amount of 5%, 10%, and 15%. The parameters of the thermodynamic gelatinization characteristics were determined by the differential scanning calorimetry method. In addition, the pasting characteristics were determined with the use of a viscosity analyzer and the viscoelastic properties were assessed. Sweep frequency and creep and recovery tests were used to assess the viscoelastic properties of the tested gels. It was found that replacing wheat flour with nuts increased the values of gelatinization temperature, gelatinization, and retrogradation enthalpy, and the degree of retrogradation. The highest viscosity was characteristic of the control sample (2039 mPa·s), and the lowest for the paste with 15% addition of walnuts (1120 mPa·s). Replacing the flour with nuts resulted in a very visible reduction in the viscosity of such systems. In addition, gels based on the systems with the addition of H and W were weak gels (tan δ = G″/G′ > 0.1), and the values of G′ and G″ parameters decreased with the increased share of nuts in the systems. Creep and recovery analysis indicated that the systems in which wheat flour was replaced with hazelnuts were less susceptible to deformation compared to the systems with the addition of W.


2008 ◽  
Vol 30 (11) ◽  
pp. 1383-1395 ◽  
Author(s):  
Stefano Vitale ◽  
Stefano Mazzoli

2020 ◽  
Vol 29 (12) ◽  
pp. 52-58
Author(s):  
E.P. Meleshkina ◽  
◽  
S.N. Kolomiets ◽  
A.S. Cheskidova ◽  
◽  
...  

Objectively and reliably determined indicators of rheological properties of the dough were identified using the alveograph device to create a system of classifications of wheat and flour from it for the intended purpose in the future. The analysis of the relationship of standardized quality indicators, as well as newly developed indicators for identifying them, differentiating the quality of wheat flour for the intended purpose, i.e. for finished products. To do this, we use mathematical statistics methods.


2017 ◽  
Vol 54 (6) ◽  
pp. 1597-1607 ◽  
Author(s):  
Xingli Liu ◽  
Taihua Mu ◽  
Karim Diego Yamul ◽  
Hongnan Sun ◽  
Miao Zhang ◽  
...  

2011 ◽  
Vol 105-107 ◽  
pp. 1426-1432 ◽  
Author(s):  
De Gao Zou ◽  
Tao Gong ◽  
Jing Mao Liu ◽  
Xian Jing Kong

Two of the most important parameters in dynamic analysis involving soils are the dynamic shear modulus and the damping ratio. In this study, a series of tests were performed on gravels. For comparison, some other tests carried out by other researchers were also collected. The test results show that normalized shear modulus and damping ratio vary with the shear strain amplitude, (1) normalized shear modulus decreases with the increase of dynamic shear strain amplitude, and as the confining pressure increases, the test data points move from the low end toward the high end; (2) damping ratio increases with the increase of shear strain amplitude, damping ratio is dependent on confining pressure where an increase in confining pressure decreased damping ratio. According to the test results, a reference formula is proposed to evaluate the maximum dynamic shear modulus, the best-fit curve and standard deviation bounds for the range of data points are also proposed.


2016 ◽  
Vol 55 (8) ◽  
pp. 641-648 ◽  
Author(s):  
Cattaleeya Pattamaprom ◽  
Nathayada Saengklin

2021 ◽  
Author(s):  
Mohammed Abo‐Dief ◽  
Taisser Abo‐Bakr ◽  
Mohammed Youssef ◽  
Ayat Moustafa

Sign in / Sign up

Export Citation Format

Share Document