scholarly journals Morphologic and molecular assessments of cucumber (Cucumis sativus L.) landraces

2020 ◽  
Vol 48 (2) ◽  
pp. 604-614
Author(s):  
Esra CEBECI ◽  
Volkan GOZEN ◽  
Levent KESKIN ◽  
Aytul YILDIRIM

In this study, 90 locally grown cucumber (Cucumis sativus L.) landraces were collected and morphologically characterized using 20 descriptors derived from UPOV (International Union for the Protection of New Varieties of Plants). Genetic diversity and relationships of the genotypes were revealed using 20 sequence-related amplified polymorphism (SRAP) marker combinations. The discrimination power of each polymorphic marker (estimated by the polymorphism information content) ranged from 0.15 to 0.99 with an average of 0.73. Dice's similarity coefficient ranged between 0.00-1.00. The cluster analysis that was conducted using the unweighted pair group method of arithmetic averages (UPGMA) for both molecular and morphologic data showed that all of the genotypes fell into two main groups and many subdivisions. According to morphological data, fruit length, diameter and weight of the genotypes were determined between 6.5 - 32.5 cm, 25 - 52 mm and, 28 - 625 g respectively. It is clear from the results, a moderate level of genetic diversity, which has the potential for broadening the genetic base, was observed among the Turkish cucumber landraces.

2011 ◽  
Vol 136 (6) ◽  
pp. 422-428 ◽  
Author(s):  
Qingguo Ma ◽  
Junpei Zhang ◽  
Dong Pei

Informative DNA fingerprints from 50 walnut cultivars (Juglans regia) in China were generated using amplified fragment length polymorphism (AFLP) markers to reveal their genetic diversity and relationships. Nine primer combinations were selected from 64 EcoR I/Mse I primer combinations to amplify the accessions. An average of 132 polymorphic loci per primer set was detected from the nine primer combinations. The discrimination power of each polymorphic marker (estimated by the polymorphism information content) ranged from 0.00 to 0.37 with an average of 0.19. A moderate level of genetic diversity was observed among the 50 cultivars. Their expected heterozygosity varied from 0.38 to 0.50 (average, 0.44), and Dice's similarity coefficient ranged from 0.53 to 0.86 (average, 0.70). The cluster analysis conducted using the unweighted pair group method of arithmetic averages method showed that all of the cultivars fell into five groups at Dice's similarity coefficient of 0.68. According to the comprehensive analyses based on the specific loci, similarity coefficient, and clustering results, six cultivars (Liaoning 1, Zixin, Shanhe 4, Zha 343, Tulare, and Chandler) were considered important germplasms of walnut cultivars.


2019 ◽  
Vol 20 (1) ◽  
pp. 1
Author(s):  
Riry Prihatini ◽  
Tri Budiyanti ◽  
Noflindawati Noflindawati

<p class="abstrakinggris">Diverse papaya (<em>Carica</em> sp.) accessions are found in many regions in Indonesia, but their genetic diversity have not yet been studied. Random Amplified Polymorphic DNA (RAPD) is a simple yet accurate method that can be used to examine the genetic diversity of papaya. The study aimed to examine the genetic diversity of Indonesian papaya accessions using RAPD markers and morphological characters. The RAPD was applied on 23 papaya accessions using 30 primers. The appearing bands were further analyzed with the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and Principal Component Analysis (PCA). The molecular results were then compared to the fruit morphological data, including fruit shape, size, flesh color, texture, and flavor. The RAPD analysis revealed that the 23 papaya accessions clustered into six main clades with Dice-Sorensen coefficient similarity ranged from 0.71 to 0.98. The first group consisted of 11 accessions, including both the hybrids and local accessions. The second group consisted of eight accessions especially six Indonesian hybrids, a Mexican Hybrid and a Hawaiian hybrid. The other four groups had a single member namely Sicincin Panjang, Lokal Sumani, Cariso, and Carica. The molecular grouping, however, did not align with the fruit character grouping. Overall, it was implied that the Indonesian papaya accessions were genetically narrow, of which some accessions were closely related to Hawaiian and Mexican accessions. These results can be used as a reference on papaya crossbreeding program in Indonesia.</p>


Author(s):  
Tianxu Cao ◽  
Jingyu Sun ◽  
Nan Shan ◽  
Xin Chen ◽  
Putao Wang ◽  
...  

China is one of the native places of yams with abundant representative local varieties. However, the genetic differences between these local varieties remains unclear, thus considerably inhibiting their utilization and development. In this study, 26 phenotypic traits of 112 accessions from 21 provinces in China were evaluated, and 24 simple sequence repeat (SSR) and 29 sequence-related amplified polymorphism (SRAP) markers were used for the genetic diversity analysis. A total of 56 variations of 20 quality traits were detected in 112 accessions, and the most diverse phenotypic trait was stem color. Meanwhile, seven principal components were obtained from 26 phenotypic traits, with a cumulative contribution rate of 69.39%, and all the accessions were divided into six groups by clustering the phenotypic traits. Unweighted pair-group method with arithmetic means and principal coordinate analysis based on SSR-SRAP marker data showed that 112 accessions were also divided into six groups, similar to the result of phenotypic traits but with a slight difference among few accessions. Results of genetic structure analysis showed that 112 accessions could be divided into two groups; one group composed of the accessions of D. opposita, the most abundant resource in China, and the other group was a collection of the other accessions. In addition, the analysis of the origin and genetic relationship of yam also indicated that the specie of D. opposita may have originated in China. These results clarified the genetic differences in yam in China, thereby providing a basis for the identification, evaluation, and conservation of yam resource.


2021 ◽  
Vol 13 (12) ◽  
pp. 6830
Author(s):  
Murat Guney ◽  
Salih Kafkas ◽  
Hakan Keles ◽  
Mozhgan Zarifikhosroshahi ◽  
Muhammet Ali Gundesli ◽  
...  

The food needs for increasing population, climatic changes, urbanization and industrialization, along with the destruction of forests, are the main challenges of modern life. Therefore, it is very important to evaluate plant genetic resources in order to cope with these problems. Therefore, in this study, a set of ninety-one walnut (Juglans regia L.) accessions from Central Anatolia region, composed of seventy-four accessions and eight commercial cultivars from Turkey, and nine international reference cultivars, was analyzed using 45 SSR (Simple Sequence Repeats) markers to reveal the genetic diversity. SSR analysis identified 390 alleles for 91 accessions. The number of alleles per locus ranged from 3 to 19 alleles with a mean value of 9 alleles per locus. Genetic dissimilarity coefficients ranged from 0.03 to 0.68. The highest number of alleles was obtained from CUJRA212 locus (Na = 19). The values of polymorphism information content (PIC) ranged from 0.42 (JRHR222528) to 0.86 (CUJRA212) with a mean PIC value of 0.68. Genetic distances were estimated according to the UPGMA (Unweighted Pair Group Method with Arithmetic Average), Principal Coordinates (PCoA), and the Structure-based clustering. The UPGMA and Structure clustering of the accessions depicted five major clusters supporting the PCoA results. The dendrogram revealed the similarities and dissimilarities among the accessions by identifying five major clusters. Based on this study, SSR analyses indicate that Yozgat province has an important genetic diversity pool and rich genetic variance of walnuts.


2011 ◽  
Vol 46 (9) ◽  
pp. 1035-1044 ◽  
Author(s):  
Patrícia Coelho de Souza Leão ◽  
Sérgio Yoshimitsu Motoike

The objective of this work was to analyze the genetic diversity of 47 table grape accessions, from the grapevine germplasm bank of Embrapa Semiárido, using 20 RAPD and seven microsatellite markers. Genetic distances between pairs of accessions were obtained based on Jaccard's similarity index for RAPD data and on the arithmetic complement of the weighted index for microsatellite data. The groups were formed according to the Tocher's cluster analysis and to the unweighted pair‑group method with arithmetic mean (UPGMA). The microsatellite markers were more efficient than the RAPD ones in the identification of genetic relationships. Information on the genetic distance, based on molecular characteristics and coupled with the cultivar agronomic performance, allowed for the recommendation of parents for crossings, in order to obtain superior hybrids in segregating populations for the table grape breeding program of Embrapa Semiárido.


2015 ◽  
Vol 50 (7) ◽  
pp. 571-581 ◽  
Author(s):  
Guilherme da Silva Pereira ◽  
Ana Luíza Ramos Cazé ◽  
Michelle Garcia da Silva ◽  
Vanessa Cavalcante Almeida ◽  
Fernanda Oliveira da Cunha Magalhães ◽  
...  

Abstract: The objective of this work was to identify polymorphic simple sequence repeat (SSR) markers for varietal identification of cotton and evaluation of the genetic distance among the varieties. Initially, 92 SSR markers were genotyped in 20 Brazilian cotton cultivars. Of this total, 38 loci were polymorphic, two of which were amplified by one primer pair; the mean number of alleles per locus was 2.2. The values of polymorphic information content (PIC) and discrimination power (DP) were, on average, 0.374 and 0.433, respectively. The mean genetic distance was 0.397 (minimum of 0.092 and maximum of 0.641). A panel of 96 varieties originating from different regions of the world was assessed by 21 polymorphic loci derived from 17 selected primer pairs. Among these varieties, the mean genetic distance was 0.387 (minimum of 0 and maximum of 0.786). The dendrograms generated by the unweighted pair group method with arithmetic average (UPGMA) did not reflect the regions of Brazil (20 genotypes) or around the world (96 genotypes), where the varieties or lines were selected. Bootstrap resampling shows that genotype identification is viable with 19 loci. The polymorphic markers evaluated are useful to perform varietal identification in a large panel of cotton varieties and may be applied in studies of the species diversity.


Genome ◽  
2003 ◽  
Vol 46 (1) ◽  
pp. 51-58 ◽  
Author(s):  
A Segovia-Lerma ◽  
R G Cantrell ◽  
J M Conway ◽  
I M Ray

Improving commercial utilization of perennial Medicago collections requires developing approaches that can rapidly and accurately characterize genetic diversity among large numbers of populations. This study evaluated the potential of using amplified fragment length polymorphism (AFLP) DNA markers, in combination with DNA bulking over multiple genotypes, as a strategy for high-throughput characterization of genetic distances (D) among alfalfa (Medicago sativa L.) accessions. Bulked DNA templates from 30 genotypes within each of nine well-recognized germplasms (African, Chilean, Flemish, Indian, Ladak, Medicago sativa subsp. falcata, Medicago sativa subsp. varia, Peruvian, and Turkistan) were evaluated using 34 primer combinations. A total of 3754 fragments were identified, of which 1541 were polymorphic. The number of polymorphic fragments detected per primer combination ranged from 20 to 85. Pairwise D estimates among the nine germplasms ranged from 0.52 to 1.46 with M. sativa subsp. falcata being the most genetically dissimilar. Unweighted pair-group method arithmetic average (UPGMA) analysis of the marker data produced two main clusters, (i) M. sativa subsp. sativa and M. sativa subsp. varia, and (ii) M. sativa subsp. falcata. Cluster-analysis results and D estimates among the Chilean, Peruvian, Flemish, and M. sativa subsp. varia germplasms supported the hypothesis that Peruvian was more similar to original Spanish introductions into Central and South America than Chilean. Hierarchical arrangement of the nine germplasms was supported by their respective geographic, subspecific, and intersubspecific hybrid origins. Subsets of as few as seven highly informative primer pairs were identified that produced comparable D estimates and similar heirarchical arrangements compared with the complete dataset. The results indicate that use of primer-pair subsets for AFLP analysis of bulk DNA templates could serve as a high-throughput system for accurately characterizing genetic diversity among large numbers of alfalfa populations.Key words: Medicago sativa, DNA bulking, genetic distance.


Plant Disease ◽  
2021 ◽  
Author(s):  
Marwa Laribi ◽  
Alireza Akhavan ◽  
Sarrah M'Barek ◽  
Amor Yahyaoui ◽  
Stephen Ernest Strelkov ◽  
...  

Pyrenophora tritici-repentis (Ptr) causes tan spot, an important foliar disease of wheat. A collection of Ptr isolates from Tunisia, located in one of the main secondary centers of diversification of durum wheat, was tested for phenotypic race classification based on virulence on a host differential set, and for the presence of the necrotrophic effector (NE) genes ToxA, ToxB , and toxb by PCR analysis. While races 2, 4, 5, 6, 7, and 8 were identified according to their virulence phenotypes, PCR testing indicated the presence of ‘atypical’ isolates that induced necrosis on the wheat differential ‘Glenlea’, but lacked the expected ToxA gene, suggesting the involvement of other NEs in the Ptr/wheat interaction. Genetic diversity and the Ptr population structure were explored further by examining 59 Tunisian isolates and 35 isolates from Algeria, Azerbaijan, Canada, Iran, and Syria using 24 simple sequence repeat markers. Average genetic diversity, overall gene flow and percentage polymorphic loci were estimated as 0.58, 2.09 and 87%, respectively. Analysis of molecular variance showed that 81% of the genetic variance occurred within populations and 19% between populations. Cluster analysis by the unweighted pair group method indicated that ToxB- isolates grouped together and were distantly related to ToxB+ isolates. Based on Nei’s analysis, the global collection clustered into two distinct groups according to their region of origin. The results suggest that both geographic origin and the host-specificity imposed by different NEs can lead to differentiation among Ptr populations.


2013 ◽  
Vol 162 ◽  
pp. 278-284 ◽  
Author(s):  
Pawinee Innark ◽  
Chanulak Khanobdee ◽  
Sompid Samipak ◽  
Chatchawan Jantasuriyarat

2008 ◽  
Vol 88 (2) ◽  
pp. 313-322 ◽  
Author(s):  
S. C. Debnath ◽  
S. Khanizadeh ◽  
A. R. Jamieson ◽  
C. Kempler

The goal of this study was to determine the level of genetic diversity and relatedness among 16 strawberry (Fragaria H ananassa Duch.) cultivars and 11 breeding lines developed in Canada, using Inter Simple Sequence Repeat (ISSR) markers. Seventeen primers generated 225 polymorphic ISSR-PCR bands. Cluster analysis by the unweighted pair-group method with arithmetic averages (UPGMA) revealed a substantial degree of genetic similarity among the genotypes ranging from 63 to 77% that were in agreement with the principal coordinate (PCO) analysis. Geographical distribution for the place of breeding program explained only 1.4% of total variation as revealed by analysis of molecular variance (AMOVA). The ISSR markers detected a sufficient degree of polymorphism to differentiate among strawberry genotypes, making this technology valuable for cultivar identification and for the more efficient choice of parents in current strawberry breeding programs. Key words: Fragaria × ananassa, DNA fingerprinting, multivariate analysis, breeding, genetic similarity


Sign in / Sign up

Export Citation Format

Share Document