scholarly journals Effect of Training Intensity on Hepatic Steatosis and Expression of miRNAs and Target Genes in a High-fat Diet-induced Mice

2018 ◽  
Vol 27 (1) ◽  
pp. 32-39
Author(s):  
Jinkyung Cho ◽  
Jinhwan Yoon ◽  
Inho Park ◽  
Hyunsik Kang
Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4484
Author(s):  
Wenya Zheng ◽  
Ziyu Song ◽  
Sha Li ◽  
Minmin Hu ◽  
Horia Shaukat ◽  
...  

Chronic high-fat diet (HFD) is associated with the onset and progression of hepatic steatosis, and oxidative stress is highly involved in this process. The potential role of sesamol (SEM) against oxidative stress and inflammation at the transcriptional level in a mice model of hepatic steatosis is not known. In this study, we aimed to investigate the scavenging effects of SEM towards reactive oxygen generated by lipid accumulation in the liver of obese mice and to explore the mechanisms of protection. Markers of oxidative stress, vital enzymes involved in stimulating oxidative stress or inflammation, and nuclear transcription of Nrf2 were examined. Our results showed that SEM significantly inhibited the activity of the HFD-induced hepatic enzymes CYP2E1 and NOX2, associated with oxidative stress generation. Additionally, SEM reversed HFD-induced activation of NF-κB, a redox-sensitive transcription factor, and attenuated the expression of hepatic TNF-α, a proinflammatory molecule. Moreover, SEM enhanced HFD-induced hepatic Nrf2 nuclear transcription and increased the levels of its downstream target genes Ho1 and Nqo1, which indicated antiinflammation and antioxidant properties. Our study suggests that chronic HFD led to hepatic steatosis, while SEM exhibited protective effects on the liver by counteracting the oxidative stress and inflammation induced by HFD. The underlying mechanism might involve multiple pathways at the transcriptional level; the antioxidant defense mechanism was in partly mediated by the upregulation of Nrf2.


2014 ◽  
Vol 52 (01) ◽  
Author(s):  
JP Sowa ◽  
L Wingerter ◽  
G Gerken ◽  
M Palmert ◽  
A Canbay ◽  
...  

Author(s):  
Won-Il Choi ◽  
Jae-Hyun Yoon ◽  
Seo-Hyun Choi ◽  
Bu-Nam Jeon ◽  
Hail Kim ◽  
...  

AbstractZbtb7c is a proto-oncoprotein that controls the cell cycle and glucose, glutamate, and lipid metabolism. Zbtb7c expression is increased in the liver and white adipose tissues of aging or high-fat diet-fed mice. Knockout or knockdown of Zbtb7c gene expression inhibits the adipocyte differentiation of 3T3-L1 cells and decreases adipose tissue mass in aging mice. We found that Zbtb7c was a potent transcriptional repressor of SIRT1 and that SIRT1 was derepressed in various tissues of Zbtb7c-KO mice. Mechanistically, Zbtb7c interacted with p53 and bound to the proximal promoter p53RE1 and p53RE2 to repress the SIRT1 gene, in which p53RE2 was particularly critical. Zbtb7c induced p53 to interact with the corepressor mSin3A-HADC1 complex at p53RE. By repressing the SIRT1 gene, Zbtb7c increased the acetylation of Pgc-1α and Pparγ, which resulted in repression or activation of Pgc-1α or Pparγ target genes involved in lipid metabolism. Our study provides a molecular target that can overexpress SIRT1 protein in the liver, pancreas, and adipose tissues, which can be beneficial in the treatment of diabetes, obesity, longevity, etc.


Author(s):  
Shuyi Wang ◽  
Jun Tao ◽  
Huaguo Chen ◽  
Machender R. Kandadi ◽  
Mingming Sun ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ming Gu ◽  
Shengjie Fan ◽  
Gaigai Liu ◽  
Lu Guo ◽  
Xiaobo Ding ◽  
...  

Wax gourd is a popular vegetable in East Asia. In traditional Chinese medicine, wax gourd peel is used to prevent and treat metabolic diseases such as hyperlipidemia, hyperglycemia, obesity, and cardiovascular disease. However, there is no experimental evidence to support these applications. Here, we examined the effect of the extract of wax gourd peel (EWGP) on metabolic disorders in diet-induced C57BL/6 obese mice. In the preventive experiment, EWGP blocked body weight gain and lowered serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), liver TG and TC contents, and fasting blood glucose in mice fed with a high-fat diet. In the therapeutic study, we induced obesity in the mice and treated with EWGP for two weeks. We found that EWGP treatment reduced serum and liver triglyceride (TG) contents and fasting blood glucose and improved glucose tolerance in the mice. Reporter assay and gene expression analysis showed that EWGP could inhibit peroxisome proliferator-activated receptorγ(PPARγ) transactivities and could decrease mRNA levels of PPARγand its target genes. We also found that HMG-CoA reductase (HMGCR) was downregulated in the mouse liver by EWGP. Our data suggest that EWGP lowers hyperlipidemia of C57BL/6 mice induced by high-fat diet via the inhibition of PPARγand HMGCR signaling.


2012 ◽  
Vol 84 (11) ◽  
pp. 1501-1510 ◽  
Author(s):  
Hyejeong Jwa ◽  
Youngshim Choi ◽  
Ui-Hyun Park ◽  
Soo-Jong Um ◽  
Seung Kew Yoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document