scholarly journals Hemodynamic Analysis of the Prefrontal Cortex to Verify the Relationship Between Athlete Performance Level and Auditory-Spatial Working Memory: A Functional Near-Infrared Spectroscopy Study

2021 ◽  
Vol 30 (3) ◽  
pp. 369-377
Author(s):  
Tai-Seok Chang ◽  
Seo-Jin Youn

PURPOSE: The purpose of this study was to investigate the difference between the performance level and working memory of athletes through behavioral response measurements and hemodynamic measurements of the prefrontal cortex.METHODS: The study included 12 higher-level athletes, 12 athletes, and 12 non-athletes. The study task was to perform auditory-spatial working memory tasks according to difficulty (1 back, 2 back). Reaction times and hemodynamic changes in the cerebral prefrontal cortex were measured using the NIRSIT instrument during task performance.RESULTS: Behavioral response measurements of the superior players showed faster reaction times in the 1-back and 2-back tasks compared to the other two groups, and the functional connectivity of the cerebral prefrontal cortex showed strong activation in the 2-back task.CONCLUSIONS: In the case of higher-level athletes, it is suggested that working memory ability and motor performance are significant, and that working memory ability can be an important variable in sports situations.

2019 ◽  
Vol 9 (2) ◽  
pp. 38 ◽  
Author(s):  
Nounagnon Agbangla ◽  
Michel Audiffren ◽  
Jean Pylouster ◽  
Cédric Albinet

The present study aimed to examine the effects of chronological age and cardiorespiratory fitness (CRF) on cognitive performance and prefrontal cortex activity, and to test the compensation-related utilization of neural circuits hypothesis (CRUNCH). A total of 19 young adults (18–22 years) and 37 older ones (60–77 years) with a high or low CRF level were recruited to perform a working memory updating task under three different cognitive load conditions. Prefrontal cortex hemodynamic responses were continuously recorded using functional near-infrared spectroscopy, and behavioral performances and perceived difficulty were measured. Results showed that chronological age had deleterious effects on both cognitive performance and prefrontal cortex activation under a higher cognitive load. In older adults, however, higher levels of CRF were related to increased bilateral prefrontal cortex activation patterns that allowed them to sustain better cognitive performances, especially under the highest cognitive load. These results are discussed in the light of the neurocognitive CRUNCH model.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Eva Bauer ◽  
Gebhard Sammer ◽  
Max Toepper

Age-related working memory decline is associated with functional cerebral changes within prefrontal cortex (PFC). Kind and meaning of these changes are heavily discussed since they depend on performance level and task load. Hence, we investigated the effects of age, performance level, and load on spatial working memory retrieval-related brain activation in different subregions of the PFC. 19 younger (Y) and 21 older (O) adults who were further subdivided into high performers (HP) and low performers (LP) performed a modified version of the Corsi Block-Tapping test during fMRI. Brain data was analyzed by a 4 (groups: YHP, OHP, YLP, and OLP) × 3 (load levels: loads 4, 5, and 6) ANOVA. Results revealed significant group × load interaction effects within rostral dorsolateral and ventrolateral PFC. YHP showed a flexible neural upregulation with increasing load, whereas YLP reached a resource ceiling at a moderate load level. OHP showed a similar (though less intense) pattern as YHP and may have compensated age-effects at high task load. OLP showed neural inefficiency at low and no upregulation at higher load. Our findings highlight the relevance of age and performance level for load-dependent activation within rostral PFC. Results are discussed in the context of the compensation-related utilization of neural circuits hypothesis (CRUNCH) and functional PFC organization.


2019 ◽  
Author(s):  
Shannon Burns ◽  
Lianne N. Barnes ◽  
Ian A. McCulloh ◽  
Munqith M. Dagher ◽  
Emily B. Falk ◽  
...  

The large majority of social neuroscience research uses WEIRD populations – participants from Western, educated, industrialized, rich, and democratic locations. This makes it difficult to claim whether neuropsychological functions are universal or culture specific. In this study, we demonstrate one approach to addressing the imbalance by using portable neuroscience equipment in a study of persuasion conducted in Jordan with an Arabic-speaking sample. Participants were shown persuasive videos on various health and safety topics while their brain activity was measured using functional near infrared spectroscopy (fNIRS). Self-reported persuasiveness ratings for each video were then recorded. Consistent with previous research conducted with American subjects, this work found that activity in the dorsomedial and ventromedial prefrontal cortex predicted how persuasive participants found the videos and how much they intended to engage in the messages’ endorsed behaviors. Further, activity in the left ventrolateral prefrontal cortex was associated with persuasiveness ratings, but only in participants for whom the message was personally relevant. Implications for these results on the understanding of the brain basis of persuasion and on future directions for neuroimaging in diverse populations are discussed.


2021 ◽  
Vol 11 (6) ◽  
pp. 701
Author(s):  
Cheng-Hsuan Chen ◽  
Kuo-Kai Shyu ◽  
Cheng-Kai Lu ◽  
Chi-Wen Jao ◽  
Po-Lei Lee

The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained from the prefrontal cortex. These data included odor stimuli and air state, which triggered the hemodynamic response function (HRF), determined from variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels; photoplethysmography (PPG) of two wavelengths (raw optical red and near-infrared data); and the ratios of data from two optical datasets. We adopted three SVM kernel functions (i.e., linear, quadratic, and cubic) to analyze signals and compare their performance with the HRF and PPG signals. The results revealed that oxyHb yielded the most efficient single-signal data with a quadratic kernel function, and a combination of HRF and PPG signals yielded the most efficient multi-signal data with the cubic function. Our results revealed superior SVM analysis of HRFs for classifying odor and air status using fNIRS data during olfaction in humans. Furthermore, the olfactory stimulation can be accurately classified by using quadratic and cubic kernel functions in SVM, even for an individual participant data set.


Healthcare ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 412
Author(s):  
Li Cong ◽  
Hideki Miyaguchi ◽  
Chinami Ishizuki

Evidence shows that second language (L2) learning affects cognitive function. Here in this work, we compared brain activation in native speakers of Mandarin (L1) who speak Japanese (L2) between and within two groups (high and low L2 ability) to determine the effect of L2 ability in L1 and L2 speaking tasks, and to map brain regions involved in both tasks. The brain activation during task performance was determined using prefrontal cortex blood flow as a proxy, measured by functional near-infrared spectroscopy (fNIRS). People with low L2 ability showed much more brain activation when speaking L2 than when speaking L1. People with high L2 ability showed high-level brain activation when speaking either L2 or L1. Almost the same high-level brain activation was observed in both ability groups when speaking L2. The high level of activation in people with high L2 ability when speaking either L2 or L1 suggested strong inhibition of the non-spoken language. A wider area of brain activation in people with low compared with high L2 ability when speaking L2 is considered to be attributed to the cognitive load involved in code-switching L1 to L2 with strong inhibition of L1 and the cognitive load involved in using L2.


Sign in / Sign up

Export Citation Format

Share Document