scholarly journals Development of effective compositions of concrete for the construction of slabs of the roadway of steel concrete span structures

2019 ◽  
Vol 6 (3) ◽  
Author(s):  
Boris Bondarev ◽  
Dmitry Kopalin ◽  
Alexander Bondarev ◽  
Irina Erofeva ◽  
Salman Dawood Salman Al-Dulaimi

Structural concrete spans of various systems and structures with modular and monolithic roadways were used in the construction of bridges. The article presents the results of a survey of such bridge structures at 3 sites: across the Suju River (Grozny), across the Vologda River (Vologodsk), across the Tsna River in the town of Shatsk, Ryazan Region. Defects and damage to the plates of the carriageway are given. It was found that the most dangerous factors affecting the early failure of the roadway steel-reinforced concrete structures, is used to combat glaze and ice sleet aggressive in relation to reinforced concrete sand-salt mixtures. In addition, the lack of durability of structures due to other factors: vulnerability to carbonization processes; lack of reliability of the mounting joints and connections, the heterogeneity of the plate on the transverse and longitudinal bending. An algorithm for determining the parameters of the safe operation of the elements of bridge structures has been compiled; on the basis of the results of the study, the need to solve two urgent problems has been identified: urgent repairs; development and implementation of new solutions for construction and repair. It is shown that in world practice various types of concretes are developed: powder-activated, frame, etc. as well as protective materials – fine polymer concretes. Provides data on the cyclic strength of these materials, as well as the technology of their installation. In the study of the degree of influence of factors of temperature and humidity of the environment on the amount of short-term creep of polymer concrete, the method of experiment planning with the construction of an orthogonal composition plan was used and a methodical model was obtained relating these values. The main stages of the device of the polymer concrete slab instead of the collapsed one are given. The prospects of polymer-concrete coatings produced by frame technology, consisting in the first stage of gluing the aggregate grains with each other in the form of a future product, and the second, filling the voids of the porous frame with a highly mobile polymer composition is shown.

Author(s):  
Roman Kaplin

A large number of bridges are operated on the roads of Ukraine. The increase in the intensity and speed of traffic leads to qualitative changes in the operating conditions of bridge structures, which is characterized by a sharp increase in the number of cycles under load of bridge elements, and to the development of damage in them. For trouble-free operation and efficient use of bridge structures it is very important to have reliable estimates of the actual load capacity and resource, taking into account the loads, material quality, nature of the structure. The solution of the problem in this statement is possible only on the basis of the theory of reliability. However, its application to specific assessments of durability and reliability of structures is associated with the solution of a set of issues: the identification of patterns of change of various parameters, the accumulation of reliable and easy to calculate statistics on loads and mechanical characteristics of materials, etc. It is necessary to know that the strength of the material (sample) of the structural element and the structure as a whole are completely different things. The article considers a new design of reinforced concrete girder structure, using perforated metal elements and an effective reinforced concrete slab of the carriageway. On its basis, a computational model in the form of a finite-element model built in the SCAD-Office software package is formed. As a result of calculations, the components of the stress-strain state of the structure are obtained. Based on the obtained results, the reliability of the structure was calculatedunder the influence of modern regulatory loads. 


2011 ◽  
Vol 90-93 ◽  
pp. 933-939 ◽  
Author(s):  
Qiu Ning Yang ◽  
Ming Jie Mao ◽  
Sumio Hamada

Several equations for punching shear strength of the reinforced concrete slab have been proposed in the world. These equations have their own factors affecting the strength. There are numerous test data for punching shear strength of RC slabs, which have been obtained by numerous researchers. A database with approximately 300 specimens has been structured through the present study. In the present study seven equations for punching shear strength are evaluated based on the database. CCES equation is also evaluated from the present database.


2018 ◽  
Vol 15 (1) ◽  
pp. 15
Author(s):  
AMIR SYAFIQ SAMSUDIN ◽  
MOHD HISBANY MOHD HASHIM ◽  
SITI HAWA HAMZAH ◽  
AFIDAH ABU BAKAR

Nowadays, demands in the application of fibre in concrete increase gradually as an engineering material. Rapid cost increment of material causes the increase in demand of new technology that provides safe, efficient and economical design for the present and future application. The introduction of ribbed slab reduces concrete materials and thus the cost, but the strength of the structure also reduces due to the reducing of material. Steel fibre reinforced concrete (SFRC) has the ability to maintain a part of its tensile strength prior to crack in order to resist more loading compared to conventional concrete. Meanwhile, the ribbed slab can help in material reduction. This research investigated on the bending strength of 2-ribbed and 3-ribbed concrete slab with steel fibre reinforcement under static loading with a span of 1500 mm and 1000 mm x 75 mm in cross section. An amount of 40 kg/m steel fibre of all total concrete volume was used as reinforcement instead of conventional bars with concrete grade 30 N/mm2. The slab was tested under three-point bending. Load versus deflection curve was plotted to illustrate the result and to compare the deflection between control and ribbed slab. This research shows that SFRC Ribbed Slab capable to withstand the same amount of load as normal slab structure, although the concrete volume reduces up to 20%.


Author(s):  
Ralph Alan Dusseau

The results of a study funded by the U.S. Geological Survey as part of the National Earthquake Hazards Reduction Program are presented. The first objective of this study was the development of a database for all 211 highway bridges along I-55 in the New Madrid region of southeastern Missouri. Profiles for five key dimension parameters (which are stored in the database) were developed, and the results for concrete highway bridges are presented. The second objective was to perform field ambient vibration analyses on 25 typical highway bridge spans along the I-55 corridor to determine the fundamental vertical and lateral frequencies of the bridge spans measured. These 25 spans included six reinforced concrete slab spans and two reinforced concrete box-girder spans. The third objective was to use these bridge frequency results in conjunction with the dimension parameters stored in the database to develop empirical formulas for estimating bridge fundamental natural frequencies. These formulas were applied to all 211 Interstate highway bridges in southeastern Missouri. Profiles for both fundamental vertical and lateral frequencies were then developed, and the results for concrete highway bridges are presented.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4622
Author(s):  
Kevin Paolo V. Robles ◽  
Jurng-Jae Yee ◽  
Seong-Hoon Kee

The main objectives of this study are to evaluate the effect of geometrical constraints of plain concrete and reinforced concrete slabs on the Wenner four-point concrete electrical resistivity (ER) test through numerical and experimental investigation and to propose measurement recommendations for laboratory and field specimens. First, a series of numerical simulations was performed using a 3D finite element model to investigate the effects of geometrical constraints (the dimension of concrete slabs, the electrode spacing and configuration, and the distance of the electrode to the edges of concrete slabs) on ER measurements of concrete. Next, a reinforced concrete slab specimen (1500 mm (width) by 1500 mm (length) by 300 mm (thickness)) was used for experimental investigation and validation of the numerical simulation results. Based on the analytical and experimental results, it is concluded that measured ER values of regularly shaped concrete elements are strongly dependent on the distance-to-spacing ratio of ER probes (i.e., distance of the electrode in ER probes to the edges and/or the bottom of the concrete slabs normalized by the electrode spacing). For the plain concrete, it is inferred that the thickness of the concrete member should be at least three times the electrode spacing. In addition, the distance should be more than twice the electrode spacing to make the edge effect almost negligible. It is observed that the findings from the plain concrete are also valid for the reinforced concrete. However, for the reinforced concrete, the ER values are also affected by the presence of reinforcing steel and saturation of concrete, which could cause disruptions in ER measurements


Structures ◽  
2021 ◽  
Vol 32 ◽  
pp. 632-640
Author(s):  
Ashraf KamalEldin Shraif Suliman ◽  
Yanmin Jia ◽  
Ahmed Alhaj Abdualgader Mohammed

Sign in / Sign up

Export Citation Format

Share Document