Modeling and Analysis of Surface Roughness and Thrust Force in Drilling of Al Based Metal Matrix / Hybrid Composites

Author(s):  
S. Senthil Babu ◽  
B. K. Vinayagam
Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2060
Author(s):  
Palanikumar Kayaroganam ◽  
Velavan Krishnan ◽  
Elango Natarajan ◽  
Senthilkumar Natarajan ◽  
Kanesan Muthusamy

In-situ hybrid metal matrix composites were prepared by reinforcing AA6061 aluminium alloy with 10 wt.% of boron carbide (B4C) and 0 wt.% to 6 wt.% of mica. Machinability of the hybrid aluminium metal matrix composite was assessed by conducting drilling with varying input parameters. Surface texture of the hybrid composites and morphology of drill holes were examined through scanning electron microscope images. The influence of rotational speed, feed rate and % of mica reinforcement on thrust force and torque were studied and analysed. Statistical analysis and regression analysis were conducted to understand the significance of each input parameter. Reinforcement of mica is the key performance indicator in reducing the thrust force and torque in drilling of the selected material, irrespective of other parameter settings. Thrust force is minimum at mid-speed (2000 rpm) with the lowest feed rate (25 mm/min), but torque is minimum at highest speed (3000 rpm) with lowest feed rate (25 mm/min). Multi-objective optimization through a non-dominated sorting genetic algorithm has indicated that 1840 rpm of rotational speed, 25.3 mm/min of feed rate and 5.83% of mica reinforcement are the best parameters for obtaining the lowest thrust force of 339.68 N and torque of 68.98 N.m. Validation through experimental results confirms the predicted results with a negligible error (less than 0.1%). From the analysis and investigations, it is concluded that use of Al/10 wt.% B4C/5.83 wt.% mica composite is a good choice of material that comply with European Environmental Protection Directives: 2000/53/CE-ELV for the automotive sector. The energy and production cost of the components can be very much reduced if the found optimum drill parameters are adopted in the production.


2020 ◽  
Vol 17 (5) ◽  
pp. 661-674 ◽  
Author(s):  
Sathiyamoorthy Margabandu ◽  
Senthilkumar Subramaniam

Purpose This paper aims to deal with the influence of cutting parameters on drill thrust force, delamination and surface roughness in the drilling of laminated jute/carbon hybrid composites. Design/methodology/approach The hybrid composites were fabricated with four layers of fabrics, which are arranged in different sequences using the hand-layup technique. Drilling experiments involved drilling of 6 mm diameter holes on the prepared composite plates using high-speed steel and solid carbide drill materials. Analysis of variance was used to find the influence, percentage contribution and significance of drilling parameters on drilling-induced damages. Scanning electron microscopy analysis was also conducted to understand the fracture behavior and surface morphology of the drilled holes. Findings The experimental study reveals that the most significant effect was the feed rate influenced the drill thrust force and the drill speed influenced both delamination factor and surface roughness of hybrid fiber-reinforced composites. From observations, the suggested combination for drilling jute/carbon hybrid composites is carbide drill, spindle speed of 1,750 rpm and feed of 0.03 mm/rev. Originality/value The new lightweight and low-cost hybrid composites were developed by hybridizing jute with carbon fabrics in the epoxy matrix with interplay arrangements. The influence of cutting speed and feed rate on delamination damage and surface roughness in the drilling of hybrid composites have been experimentally evaluated.


2020 ◽  
Vol 22 (1) ◽  
pp. 341-356
Author(s):  
M. Kathirvel ◽  
K. Palani Kumar ◽  
P. M. Diaz

AbstractOwing to the distinguished properties Metal Matrix Graphite Hybrid Composites (Al/SiC-MMC-Gr) are used in various applications. This paper deals with the utility of Taguchi and response surface methodologies for the prediction of surface roughness in tuning of these materials with PCD tool. The cutting parameters effect on surface quality is analyzed and an empirical model with respect to turning parameters is established using response surface method. The most important parameter that influences the turning Al/SiC-MMC-Gr is feed. The measured and predicted results are approximately equal, which proves that, model is to be used for predicting surface finish in turning of these composites. Validation experiments have been used to confirm the predicted results.


Author(s):  
TS Senthilkumar ◽  
R Muralikannan ◽  
T Ramkumar ◽  
S Senthil Kumar

A substantially developed machining process, namely wire electrical discharge machining (WEDM), is used to machine complex shapes with high accuracy. This existent work investigates the optimization of the process parameters of wire electrical discharge machining, such as pulse on time ( Ton), peak current ( I), and gap voltage ( V), to analyze the output performance, such as kerf width and surface roughness, of AA 4032–TiC metal matrix composite using response surface methodology. The metal matrix composite was developed by handling the stir casting system. Response surface methodology is implemented through the Box–Behnken design to reduce experiments and design a mathematical model for the responses. The Box–Behnken design was conducted at a confident level of 99.5%, and a mathematical model was established for the responses, especially kerf width and surface roughness. Analysis of variance table was demarcated to check the cogency of the established model and determine the significant process. Surface roughness attains a maximum value at a high peak current value because high thermal energy was released, leading to poor surface finish. A validation test was directed between the predicted value and the actual value; however, the deviation is insignificant. Moreover, a confirmation test was handled for predicted and experimental values, and a minimal error was 2.3% and 2.12% for kerf width and surface roughness, respectively. Furthermore, the size of the crater, globules, microvoids, and microcracks were increased by amplifying the pulse on time.


Author(s):  
D. S. Sai Ravi Kiran ◽  
Alavilli Sai Apparao ◽  
Vempala GowriSankar ◽  
Shaik Faheem ◽  
Sheik Abdul Mateen ◽  
...  

This paper investigates the machinability characteristics of end milling operation to yield minimum tool wear with the maximum material removal rate using RSM. Twenty-seven experimental runs based on Box-Behnken Design of Response Surface Methodology (RSM) were performed by varying the parameters of spindle speed, feed and depth of cut in different weight percentage of reinforcements such as Silicon Carbide (SiC-5%, 10%,15%) and Alumina (Al2O3-5%) in alluminium 7075 metal matrix. Grey relational analysis was used to solve the multi-response optimization problem by changing the weightages for different responses as per the process requirements of quality or productivity. Optimal parameter settings obtained were verified through confirmatory experiments. Analysis of variance was performed to obtain the contribution of each parameter on the machinability characteristics. The result shows that spindle speed and weight percentage of SiC are the most significant factors which affect the machinability characteristics of hybrid composites. An appropriate selection of the input parameters such as spindle speed of 1000 rpm, feed of 0.02 mm/rev, depth of cut of 1 mm and 5% of SiC produce best tool wear outcome and a spindle speed of 1838 rpm, feed of 0.04 mm/rev, depth of cut of 1.81 mm and 6.81 % of SiC for material removal rate.


2021 ◽  
Vol 106 ◽  
pp. 109-115
Author(s):  
L.B. Abhang ◽  
M. Hameedullah

The objective of this study focuses on developing empirical prediction models using response regression analysis and fuzzy-logic. These models latter can be used to predict surface roughness according to technological variables. The values of surface roughness produced by these models are compared with experimental results. Experimental investigation has been carried out by using scientific composite factorial design on precision lathe machine with tungsten carbide inserts. Surface roughness measured at end of each experimental trial (three times), to get the effect of machining conditions and tool geometry on the surface finish values. Research showed that soft computing fuzzy logic model developed produces smaller error and has satisfactory results as compared to response regression model during machining.


Sign in / Sign up

Export Citation Format

Share Document