scholarly journals Drilling Parameters Analysis on In-Situ Al/B4C/Mica Hybrid Composite and an Integrated Optimization Approach Using Fuzzy Model and Non-Dominated Sorting Genetic Algorithm

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2060
Author(s):  
Palanikumar Kayaroganam ◽  
Velavan Krishnan ◽  
Elango Natarajan ◽  
Senthilkumar Natarajan ◽  
Kanesan Muthusamy

In-situ hybrid metal matrix composites were prepared by reinforcing AA6061 aluminium alloy with 10 wt.% of boron carbide (B4C) and 0 wt.% to 6 wt.% of mica. Machinability of the hybrid aluminium metal matrix composite was assessed by conducting drilling with varying input parameters. Surface texture of the hybrid composites and morphology of drill holes were examined through scanning electron microscope images. The influence of rotational speed, feed rate and % of mica reinforcement on thrust force and torque were studied and analysed. Statistical analysis and regression analysis were conducted to understand the significance of each input parameter. Reinforcement of mica is the key performance indicator in reducing the thrust force and torque in drilling of the selected material, irrespective of other parameter settings. Thrust force is minimum at mid-speed (2000 rpm) with the lowest feed rate (25 mm/min), but torque is minimum at highest speed (3000 rpm) with lowest feed rate (25 mm/min). Multi-objective optimization through a non-dominated sorting genetic algorithm has indicated that 1840 rpm of rotational speed, 25.3 mm/min of feed rate and 5.83% of mica reinforcement are the best parameters for obtaining the lowest thrust force of 339.68 N and torque of 68.98 N.m. Validation through experimental results confirms the predicted results with a negligible error (less than 0.1%). From the analysis and investigations, it is concluded that use of Al/10 wt.% B4C/5.83 wt.% mica composite is a good choice of material that comply with European Environmental Protection Directives: 2000/53/CE-ELV for the automotive sector. The energy and production cost of the components can be very much reduced if the found optimum drill parameters are adopted in the production.

Author(s):  
Xiao-fen Liu ◽  
Wen-hu Wang ◽  
Rui-song Jiang ◽  
Yi-feng Xiong ◽  
Kun-yang Lin ◽  
...  

Abstract The current state of surface roughness focuses on the 2D roughness. However, there are shortcomings in evaluating surface quality of particle reinforced metal matrix composites using 2D roughness due to the fact that the measuring direction has a vital impact on the 2D roughness value. It is therefore of great importance and significance to develop a proper criterion for measuring and evaluating the surface roughness of cutting particle reinforced metal matrix composites. In this paper, an experimental investigation was performed on the effect of cutting parameters on the surface roughness in cutting in-situ TiB2/7050Al MMCs. The 2D roughness Ra, 3D roughness Sa and Sq were comparatively studied for evaluating the machined surface quality of in-situ TiB2/7050Al MMCs. The influence of cutting parameters on the surface roughness was also analyzed. The big difference between roughness Ra measured along cutting and feed directions showed the great impact of measuring direction. Besides, surface defects such as pits, grooves, protuberances and voids were observed, which would influence 2D roughness value greatly, indicating that 3D roughness was more suitable for evaluating surface quality of cutting in-situ TiB2/7050Al MMCs. The cutting depth and feed rate were found to have the highest influence on 3D roughness while the effect of cutting speed was minimal. With increasing feed rate, cutting depth or width, the 3D roughness increased accordingly. But it decreased as cutting speed increased.


2020 ◽  
Vol 17 (5) ◽  
pp. 661-674 ◽  
Author(s):  
Sathiyamoorthy Margabandu ◽  
Senthilkumar Subramaniam

Purpose This paper aims to deal with the influence of cutting parameters on drill thrust force, delamination and surface roughness in the drilling of laminated jute/carbon hybrid composites. Design/methodology/approach The hybrid composites were fabricated with four layers of fabrics, which are arranged in different sequences using the hand-layup technique. Drilling experiments involved drilling of 6 mm diameter holes on the prepared composite plates using high-speed steel and solid carbide drill materials. Analysis of variance was used to find the influence, percentage contribution and significance of drilling parameters on drilling-induced damages. Scanning electron microscopy analysis was also conducted to understand the fracture behavior and surface morphology of the drilled holes. Findings The experimental study reveals that the most significant effect was the feed rate influenced the drill thrust force and the drill speed influenced both delamination factor and surface roughness of hybrid fiber-reinforced composites. From observations, the suggested combination for drilling jute/carbon hybrid composites is carbide drill, spindle speed of 1,750 rpm and feed of 0.03 mm/rev. Originality/value The new lightweight and low-cost hybrid composites were developed by hybridizing jute with carbon fabrics in the epoxy matrix with interplay arrangements. The influence of cutting speed and feed rate on delamination damage and surface roughness in the drilling of hybrid composites have been experimentally evaluated.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4468
Author(s):  
Vigneshwaran Shanmugam ◽  
Uthayakumar Marimuthu ◽  
Sundarakannan Rajendran ◽  
Arumugaprabu Veerasimman ◽  
Adamkhan Mahaboob Basha ◽  
...  

Filled hybrid composites are widely used in various structural applications where machining is critical. Hence, it is essential to understand the performance of the fibre composites’ machining behaviour. As such, a new hybrid structural composite was fabricated with redmud as filler and sisal fibre as reinforcement in polyester matrix. The composite was then tested for its drilling performance. A comprehensive drilling experiment was conducted using Taguchi L27 orthogonal array. The effect of the drill tool point angle, the cutting speed, the feed rate on thrust force, delamination, and burr formation were analysed for producing quality holes. The significance of each parameter was analysed, and the experimental outcomes revealed some important findings in the context of the drilling behaviour of sisal fibre/polyester composites with redmud as a filler. Spindle speed contributed 39% in affecting the thrust force, while the feed rate had the maximum influence of ca. 38% in affecting delamination.


Author(s):  
A. Mahamani ◽  
N. Muthukrishnan ◽  
V. Anandakrishnan

In-situ aluminum matrix composite is the innovation of high performance material technology and it has superior interfacial integrity and thermodynamic stability between the matrix and reinforcement. During synthesis, the ZrB2 particle is formed by exothermic reaction within the aluminum melt. As a result, small, fine and oxide free reinforcements are formed. Excessive temperature released from in-situ chemical reaction will facilitate the homogeneous distribution of particles in entire shape of the composites. Making the engineering components from this composite material require machining operations. Therefore, addressing the machinability issues of the composite is very important. This paper proposes an approach to optimize the machining parameters in turning of Al 6061-6% ZrB2 in-situ Metal Matrix Composite (MMC) with multiple performance characteristics by using grey relational analysis. The effect of in-situ ZrB2 reinforcement particles on machinability behavior need to be studied. The machining parameters, namely cutting speed, feed rate and depth of cut are optimized with considerations of multiple performance characteristics including surface roughness, tool wear and cutting force. It is concluded that the feed rate has the strongest effect. The confirmation experiment indicates that there is a good agreement between the estimated value and experimental value of the Grey relational grade.


Author(s):  
Amresh Kumar ◽  
Neelkanth Grover ◽  
Alakesh Manna ◽  
Raman Kumar ◽  
Jasgurpreet Singh Chohan ◽  
...  

AbstractAluminum hybrid composites have the potential to satisfy emerging demands of lightweight materials with enhanced mechanical properties and lower manufacturing costs. There is an inclusion of reinforcing materials with variable concentrations for the preparation of hybrid metal matrix composites to attain customized properties. Hence, it is obligatory to investigate the impact of different machining conditions for the selection of optimum parameter settings for aluminum-based hybrid metal matrix composite material. The present study aims to identify the optimum machining parameters during wire electrical discharge machining of samples prepared with graphite, ferrous oxide, and silicon carbide. In the present research work, five different process parameters and three response parameters such as material removal rate, surface roughness, and spark Gap are considered for process optimization. Energy-dispersive spectroscopy and scanning electron microscopy analysis reported the manifestation of the recast layer. Analytical hierarchy process and genetic algorithm have been successfully implemented to identify the best machining conditions for hybrid composites.


Author(s):  
Kunyang Lin ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Yifeng Xiong

In situ TiB2/7050 Al metal matrix composites are processed by mixed-salt reaction method to improve the interfacial reactions and enhance the material properties. However, the lack of research on its machinability limits its wide application in the industry. In the present study, the effects of rake angle and feed rate on the surface quality while turning in situ TiB2/7050 Al metal matrix composites have been investigated. Three types of polycrystalline diamond (PCD) tools with 0° ∼ 5° ∼ 10° rake angles were utilized in this work. The surface roughness, surface topography and residual stress profile developed in TiB2/7050 Al composites by cylindrical turning were evaluated. The experimental results reveal that feed rate has more significant impact for surface roughness than rake angle. The smooth surface topography without void and defects indicates that the chips are formed in ductile mode. Unlike other metallic alloys, the surface residual stress of TiB2/7050 Al composites are always in compressive state. In addition, the increase of feed rate contributes to deeper residual stress penetration layer. Through the discussion in this study, the role of TiB2 reinforcement particles on the machinability of TiB2/7050 Al composites can be better understood.


2016 ◽  
Vol 840 ◽  
pp. 294-298 ◽  
Author(s):  
Mohd Haslam Mohd Hanapi ◽  
Zuhailawati Hussain ◽  
Indra Putra Almanar ◽  
Anasyida Abu Seman

Taguchi approach was applied to evaluate the processing parameter to determine the most influential control factors which will yield better tensile strength of friction stir welded joint of 6061-T6 aluminium alloy. The processing parameters involved are tool shoulder diameter, in mm (18 ,20, 22), tool rotational speed, in rpm (410, 865, 1140), and feed rate, in mm/min (22, 32, 45). Taguchi parametric design and optimization approach was used. Through the Taguchi parametric design approach, the optimum levels of process parameters were determined. The results indicate that the shoulder size, rotational speed, and feed rate are the significant parameters influencing the tensile strength and hardness of the joint. The predicted optimal values of tensile strength 6061-T6 aluminium alloy is 321.16 MPa. The results was confirmed by further experiments, where the experimented values for tensile strength is 301.28 MPa.


2018 ◽  
Vol 60 (12) ◽  
pp. 1221-1224 ◽  
Author(s):  
Balachandran Gobalakrishnan ◽  
P. Ramadoss Lakshminarayanan ◽  
Raju Varahamoorthi

2019 ◽  
Vol 61 (8) ◽  
pp. 779-786
Author(s):  
Bellamballi Munivenkatappan Muthami Selvan ◽  
Veeramani Anandakrishnan ◽  
Muthukannan Duraiselvam ◽  
Sivaraj Sundarameenakshi

Sign in / Sign up

Export Citation Format

Share Document