scholarly journals FISH-mapping of the 5S rDNA locus in chili peppers (Capsicum-Solanaceae)

2016 ◽  
Vol 88 (1) ◽  
pp. 117-125 ◽  
Author(s):  
PATRICIA M. AGUILERA ◽  
HUMBERTO J. DEBAT ◽  
MARISEL A. SCALDAFERRO ◽  
DARDO A. MARTÍ ◽  
MAURO GRABIELE

ABSTRACT We present here the physical mapping of the 5S rDNA locus in six wild and five cultivated taxa of Capsicum by means of a genus-specific FISH probe. In all taxa, a single 5S locus per haploid genome that persistently mapped onto the short arm of a unique metacentric chromosome pair at intercalar position, was found. 5S FISH signals of almost the same size and brightness intensity were observed in all the analyzed taxa. This is the first cytological characterization of the 5S in wild taxa of Capsicum by using a genus-derived probe, and the most exhaustive and comprehensive in the chili peppers up to now. The information provided here will aid the cytomolecular characterization of pepper germplasm to evaluate variability and can be instrumental to integrate physical, genetic and genomic maps already generated in the genus.

Genome ◽  
2002 ◽  
Vol 45 (1) ◽  
pp. 189-197 ◽  
Author(s):  
Piotr A Ziolkowski ◽  
Jan Sadowski

To improve resolution of physical mapping on Brassica chromosomes, we have chosen the pachytene stage of meiosis where incompletely condensed bivalents are much longer than their counterparts at mitotic metaphase. Mapping with 5S and 45S rDNA sequences demonstrated the advantage of pachytene chromosomes in efficient physical mapping and confirmed the presence of a novel 5S rDNA locus in Brassica oleracea, initially identified by genetic mapping using restriction fragment length polymorphism (RFLP). Fluorescence in situ hybridization (FISH) analysis visualized the presence of the third 5S rDNA locus on the long arm of chromosome C2 and confirmed the earlier reports of two 45S rDNA loci in the B. oleracea genome. FISH mapping of low-copy sequences from the Arabidopsis thaliana bacterial artificial chromosome (BAC) clones on the B. oleracea chromosomes confirmed the expectation of efficient and precise physical mapping of meiotic bivalents based on data available from A. thaliana and indicated conserved organization of these two BAC sequences on two B. oleracea chromosomes. Based on the heterologous in situ hybridization with BACs and their mapping applied to long pachytene bivalents, a new approach in comparative analysis of Brassica and A. thaliana genomes is discussed.Key words: Brassicaceae, pachytene chromosomes, FISH, rDNA, BACs.


2013 ◽  
Vol 11 (2) ◽  
pp. 327-334 ◽  
Author(s):  
Roberto Laridondo Lui ◽  
Daniel Rodrigues Blanco ◽  
Juliana de Fatima Martinez ◽  
Vladimir Pavan Margarido ◽  
Paulo Cesar Venere ◽  
...  

Ageneiosus is the most widely distributed genus of the family Auchenipteridae among South American river basins. Although chromosome studies in the family are scarce, this genus has the largest number of analyzed species, with 2n = 54 to 56 chromosomes, differing from the rest of the family (2n = 58). This study aimed to analyze Ageneiosus inermis from the Araguaia River basin. The diploid number found was of 56 chromosomes. Heterochromatin was allocated in terminal region of most chromosomes, plus a pericentromeric heterochromatic block in pair 1, a pair distinguished by size in relation to other chromosomes pairs. AgNORs were detected in only one submetacentric chromosome pair, which was confirmed by FISH. 5S rDNA was present in only one metacentric chromosome pair. Hybridization with [TTAGGG]n sequence marked the telomeres of all chromosomes, in addition to an ITS in the proximal region of the short arm of pair 1. The repetitive [GATA]n sequence was dispersed, with preferential location in terminal region of the chromosomes. Ageneiosus has a genomic organization somewhat different when compared to other Auchenipteridae species. Evidences indicate that a chromosomal fusion originated the first metacentric chromosome pair in A. inermis, rearrangement which may be a basal event for the genus


Caryologia ◽  
2011 ◽  
Vol 64 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Diao Ying ◽  
Chen Qingfu ◽  
Lin Xianming ◽  
Liao Chaolin ◽  
Hu Zhongli ◽  
...  

2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Thais K. S. S. Teixeira ◽  
Paulo C. Venere ◽  
Daniela C. Ferreira ◽  
Sandra Mariotto ◽  
Jonathan P. Castro ◽  
...  

ABSTRACT Astyanax is one of the most abundant and diverse taxa of fishes in the Neotropical region. In order to increase the amount of cytogenetic information for Astyanax as well as to exhibit data to subsidize future taxonomic studies, this work analyzed three species of Astyanax: two species are cryptic, and are here reported to live in syntopy (A. abramis and A. lacustris); the first karyotype description for A. pirapuan is also presented. Cytogenetic analyzes reveal a diploid number of 2n=50 chromosomes for three species, yet with differences in their karyotype morphology. The physical mapping of 18S rDNA showed up to thirteen sites in A. pirapuan and two in A. abramis and A. lacustris. The physical mapping of 5S rDNA has proven to be an effective marker for the characterization of species of Astyanax studied in this work.


Genome ◽  
2005 ◽  
Vol 48 (5) ◽  
pp. 895-904
Author(s):  
Pedro Costa-Nunes ◽  
Teresa Ribeiro ◽  
Margarida Delgado ◽  
Leonor Morais-Cecílio ◽  
Neil Jones ◽  
...  

'Lindström' wheat (AABBDD + rye B chromosomes) was used to study the effects of alien chromatin introgressed into a wheat genetic background, subjecting the wheat genome to a new and transient allopolyploidisation episode. Using this experimental material, we have previously demonstrated that no large-scale chromosomal translocations occurred as a result of the genomic constitution of the addition line. However, we have shown that the presence of a number of rye B chromosomes is associated with changes in the interphase organization and expression patterns of wheat rDNA loci. We have now extended our studies to focus on a further characterization of 'Lindström' 5S rDNA loci and also on high molecular weight glutenin subunit (HMW-GS) patterns. In the process, we have uncovered an unusually large variant of the 5S rDNA locus on wheat chromosome 1B (not to be confused with rye B chromosomes) and 2 novel HMW glutenin y-type alleles. These changes are not directly related to variation in rye B chromosome number in the present material, but the fact that a new, and still segregating, 1Dy HMW-GS gene was identified indicates a recent timescale for its origin. Strikingly, the 'Lindström' 5S rDNA 1B locus integrates a unit sharing 94% homology with a rye 5S rDNA sequence, suggesting the possibility that the wheat locus was colonized by highly homologous rye sequences during the breeding of 'Lindström', when the rye and wheat genomes were together, albeit briefly, in the same nucleus.Key words: Triticum aestivum 'Lindström', allopolyploidisation, 5S rDNA, NTS, high molecular weight glutenin (HMW-GS).


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dayane Petik dos Santos ◽  
Denise Felicetti ◽  
Lucas Baumgärtner ◽  
Vladimir Pavan Margarido ◽  
Daniel Rodrigues Blanco ◽  
...  

ABSTRACT Auchenipteridae is divided into subfamilies Centromochlinae and Auchenipterinae. Parauchenipterus is included in the latter and is subject of taxonomic discussions concerning its validation or synonymization with Trachelyopterus. Herein, three species from two hydrographic basins were cytogenetically analyzed: Parauchenipterus striatulus from Doce River and two sympatric species, P. galeatus and Trachelyopterus coriaceus, from the Araguaia River. Diploid number of 58 chromosomes was verified for all species, but P. striatulus has different karyotype formula from the others. The three species have heterochromatin located in terminal regions of almost all chromosomes and in pericentromeric region on acrocentric chromosomes. Simple NORs was verified on a subtelocentric chromosome for all species. 5S rDNA sites were detected in three submetacentric chromosome pairs in P. striatulus; in a metacentric chromosome pair and submetacentric pair in T. coriaceus; and in one metacentric chromosome pair in P. galeatus. The similarities found in the karyotypes of the three species suggest the existence of only one genus, Trachelyopterus; therefore, our data refutes the validation of Parauchenipterus. Moreover, the differences in 5S rDNA distribution in P. galeatus in comparison with other populations already studied, indicate the existence of a new taxonomic unit, which suggests a species complex in P. galeatus.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 89
Author(s):  
Olga Yu. Yurkevich ◽  
Tatiana E. Samatadze ◽  
Inessa Yu. Selyutina ◽  
Svetlana I. Romashkina ◽  
Svyatoslav A. Zoshchuk ◽  
...  

The systematic knowledge on the genus Hedysarum L. (Fabaceae: Hedysareae) is still incomplete. The species from the section Hedysarum are valuable forage and medicinal resources. For eight Hedysarum species, we constructed the integrated schematic map of their distribution within Eurasia based on currently available scattered data. For the first time, we performed cytogenomic characterization of twenty accessions covering eight species for evaluating genomic diversity and relationships within the section Hedysarum. Based on the intra- and interspecific variability of chromosomes bearing 45S and 5S rDNA clusters, four main karyotype groups were detected in the studied accessions: (1) H.arcticum, H. austrosibiricum, H. flavescens, H. hedysaroides, and H. theinum (one chromosome pair with 45S rDNA and one pair bearing 5S rDNA); (2) H. alpinum and one accession of H. hedysaroides (one chromosome pair with 45S rDNA and two pairs bearing 5S rDNA); (3) H. caucasicum (one chromosome pair with 45S rDNA and one chromosome pair bearing 5S rDNA and 45S rDNA); (4) H. neglectum (two pairs with 45S rDNA and one pair bearing 5S rDNA). The species-specific chromosomal markers detected in karyotypes of H. alpinum, H. caucasicum, and H. neglectum can be useful in taxonomic studies of this section.


Author(s):  
Hoda B. M. Ali ◽  
Samira A. Osman

Abstract Background Fluorescence In Situ Hybridization (FISH) played an essential role to locate the ribosomal RNA genes on the chromosomes that offered a new tool to study the chromosome structure and evolution in plant. The 45S and 5S rRNA genes are independent and localized at one or more loci per the chromosome complement, their positions along chromosomes offer useful markers for chromosome discriminations. In the current study FISH has been performed to locate 45S and 5S rRNA genes on the chromosomes of nine Lathyrus species belong to five different sections, all have chromosome number 2n=14, Lathyrus gorgoni Parl, Lathyrus hirsutus L., Lathyrus amphicarpos L., Lathyrus odoratus L., Lathyrus sphaericus Retz, Lathyrus incospicuus L, Lathyrus paranensis Burkart, Lathyrus nissolia L., and Lathyrus articulates L. Results The revealed loci of 45S and 5S rDNA by FISH on metaphase chromosomes of the examined species were as follow: all of the studied species have one 45S rDNA locus and one 5S rDNA locus except L. odoratus L., L. amphicarpos L. and L. sphaericus Retz L. have two loci of 5S rDNA. Three out of the nine examined species have the loci of 45S and 5S rRNA genes on the opposite arms of the same chromosome (L. nissolia L., L. amphicarpos L., and L. incospicuus L.), while L. hirsutus L. has both loci on the same chromosome arm. The other five species showed the loci of the two types of rDNA on different chromosomes. Conclusion The detected 5S and 45S rDNA loci in Lathyrus could be used as chromosomal markers to discriminate the chromosome pairs of the examined species. FISH could discriminate only one chromosome pair out of the seven pairs in three species, in L. hirsutus L., L. nissolia L. and L. incospicuus L., and two chromosome pairs in five species, in L. paranensis Burkart, L. odoratus L., L. amphicarpos L., L. gorgoni Parl. and L. articulatus L., while it could discriminate three chromosome pairs in L. sphaericus Retz. these results could contribute into the physical genome mapping of Lathyrus species and the evolution of rDNA patterns by FISH in the coming studies in future.


2012 ◽  
Vol 40 (2) ◽  
pp. 39 ◽  
Author(s):  
Neiva Izabel PIEROZZI ◽  
Thalita C. BORGHI ◽  
Maria Bernadete SILVAROLLA

Chromosome characterization were carried out in Coffea kapakata A. Chev (Bridson), C. racemosa Lour., C. salvatrix Swynn. & Philipson and in Psilanthus travancorensis (Wight & Arn.) J.-F. Leroy (2n=22) by employing the conventional acetic orcein technique as well as by C- and NOR-banding aiming further comparative studies. Although C. canephora and C. dewevrei have already been studied and depict a C-band karyotype, they have also been included for further comparisons, since NOR-banding and some other morphometric data have not been obtained yet. However, there were observed some differences among the species regarding chromosomal morphometry. The karyotype formula obtained was 3m+6sm+2sms for C. salvatrix and P. travancorensis, 1M +2m + 6sm + 2sms for C. kapakata and 2M +1m + 6sm + 2sms for C. racemosa. All species displayed a moderate karyotype asymmetry and according to Stebbins system, C. canephora, C. dewevrei, C. kapakata and C. racemosa were classified as 3B while C. salvatrix and P. travancorensis were classified as 2A. Among the four indices used to assess karyotype asymmetry, Paszko AI index along with Stebbins were best suited to individualize the species. C-bands were preferentially situated at a pericentromeric/centromeric position. Two pairs of chromosomes, with secondary constriction and satellite segments, were observed in all the species following acetic orcein staining. C. racemosa and C. salvatrix showed NOR-band in both pairs, while only one chromosome pair carrying NOR-band was seen in C. canephora, C. dewevrei, C. kapakata and P. travancorensis. Data on chromosome morphometry, asymmetry indices and NOR-banding were suitable for the characterization of the species.


Sign in / Sign up

Export Citation Format

Share Document