scholarly journals Morphological, pathogenic and genetic diversity of Botrytis cinerea Pers. in blackberry cultivations in Colombia

2019 ◽  
Vol 41 (6) ◽  
Author(s):  
Liliana Isaza ◽  
Yenni Paola Zuluaga ◽  
Marta Leonor Marulanda

Abstract The Andean blackberry (Rubus glaucus Benth) is one of the most important fruits with the greatest commercial projection in Colombia. The factors that most affect its production are the attack of diseases and the scarce information about its control. One of the most limiting diseases of the crop is the gray mold, produced by the fungus Botrytis cinerea. This research presents the diversity of B. cinerea isolates from fields of andean blackberry in Colombia, based on the morphological, pathogenic and genetic characteristics allowing broadening the knowledge of the phytopathogen for subsequent management measures. Andean blackberry fruits were collected with characteristic symptoms of gray mold in farms located in eight producing areas of Colombian Andean region. A total of 50 samples were analyzed finding two types of growth, miceliar and sclerocial, differences in the layout and size of the sclerotia, as well as differences in the daily growth of the mycelium. Regarding genetic characterization with microsatellite markers, it was shown that genetic diversity is concentrated within populations and that there is a tendency to group by geographical origin. With the pathogenicity tests, the two most pathogenic isolates were selected and it was found that, although the four possible genotypes were found with the transposable elements (Vacuma, Transposa, Boty, Flipper), none of them presented high resistance to the fungicide fenhexamide.

Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 532-539 ◽  
Author(s):  
Achour Amiri ◽  
Stacy M. Heath ◽  
Natalia A. Peres

Succinate dehydrogenase inhibitors (SDHIs) constitute a mainstay in management of gray mold caused by Botrytis cinerea in strawberry and several other crops. In this study, we investigated the risks of resistance development to three newer SDHIs (i.e., fluopyram, fluxapyroxad, and penthiopyrad) and their cross-resistance with the previously registered boscalid. We investigated the mutations in the SdhB subunit and evaluated their impact on microbial fitness in field populations of B. cinerea. Amino acid substitutions associated with resistance to SDHIs were detected at three codons of the SdhB subunit (BH272R/Y/L, BP225F, and BN230I) in the succinate dehydrogenase gene of field isolates from Florida. The BH272R, BH272Y, BH272L, BP225F, and BN230I mutations were detected at frequencies of 51.5, 28.0, 0.5, 2.5, and 4%, respectively. Strong cross-resistance patterns were evident between boscalid and fluxapyroxad and penthiopyrad but not with fluopyram, except in BH272L, BP225F, and BN230I mutants. All five mutations conferred moderate to very high resistance to boscalid whereas the BH272Y conferred resistance to fluxapyroxad and penthiopyrad. The BH272L, BN230I, and BP225F mutations conferred high resistance to all four SDHIs tested. Resistance monitoring following the first use of penthiopyrad in strawberry fields in Florida in 2013 suggests potential for quick selection for highly resistant populations and warrants careful use of the newer SDHIs. No evidence of major fitness costs due to the mutations in the SdhB subunit was found, which indicates the potential ability of the mutants to survive and compete with wild-type isolates. Our study suggests high risks for rapid widespread occurrence of B. cinerea populations resistant to the novel SDHIs unless appropriate rotation strategies are implemented immediately upon registration.


Plant Disease ◽  
2019 ◽  
Vol 103 (4) ◽  
pp. 748-758 ◽  
Author(s):  
Yan-gang Pei ◽  
Qin-jun Tao ◽  
Xiao-juan Zheng ◽  
Ying Li ◽  
Xiao-fang Sun ◽  
...  

Botrytis cinerea (anamorph of Botryotinia fuckeliana) causes gray mold on numerous plants, including kiwifruit. The primary aim of this study was to investigate the phenotypic and genetic characteristics of the Botrytis cinerea population from kiwifruit in Sichuan Province, China. In all, 176 isolates were collected from kiwifruit orchards from eight geographic regions in Sichuan. All isolates were identified as B. cinerea sensu stricto based on the combined datasets, including morphological criteria, determination of the Bc-hch allele, and phylogenetic analysis of the genes RPB2, G3PDH, and HSP60. Three colony types (i.e., sclerotial, mycelial, and conidial) were observed on potato dextrose agar after 2 weeks, with sclerotial isolates, the predominant category, accounting for 40.91%. No obvious differences in microscopic characteristics were observed among the three types. Three genotypes of transposable elements were identified in the B. cinerea population: boty, flipper, and transposa types. The most prevalent genotype from different geographic populations of B. cinerea was transposa; in contrast, the flipper genotype accounted for only 3.98% of the total population, whereas the vacuma genotype was absent. According to MAT locus amplification, 87 and 89 isolates are MAT1-1 and MAT1-2 type, respectively, and the two mating types were found to be balanced overall in the population. Forty-eight representative isolates were all able to cause gray mold to some extent, and disease severities were significantly different between the cultivars Hongyang and Hort16A (P < 0.01). Disease severity was significantly greater on young leaves than on mature leaves (P < 0.01). No significant relationship was found between pathogenicity and geographical region, colony type, or transposon distribution. The results obtained in the present study suggest a relatively uniform species diversity of Botrytis but rich phenotypic and genetic differentiation within the B. cinerea population on kiwifruit in China. Utilizing resistant cultivars and rain-shelter cultivation instead of fungicides may be an effective approach to delaying pathogen variability.


2009 ◽  
Vol 99 (2) ◽  
pp. 185-193 ◽  
Author(s):  
V. Decognet ◽  
M. Bardin ◽  
Y. Trottin-Caudal ◽  
P. C. Nicot

In tomato glasshouses, the population structure of airborne inoculum of Botrytis cinerea depends on the production of endogenous inoculum on diseased plants as well as on incoming exogenous inoculum. Both types of inocula may contribute differently to the development of epidemics. Two strains of B. cinerea were introduced in each of four separate compartments of an experimental tomato glasshouse. We monitored their impact on disease development and on the genetic diversity of B. cinerea populations using microsatellite markers. The naturally occurring airborne inoculum of B. cinerea displayed a high level of genetic diversity and was rapidly displaced in the glasshouse, as isolates with microsatellite profiles identical to the introduced strains amounted to 66% of the inoculum sampled from the air 14 days after inoculation and 91% of those collected from stem lesions 60 days after inoculation. This suggested an important role of secondary inoculum in disease development, which is compatible with the hypothesis of a polycyclic development of gray mold epidemics in tomato glasshouses. In controlled-environment tests on tomatoes, a wide range of aggressiveness levels was observed, both for isolates sampled from the air and from lesions on plants. Hypotheses are proposed to explain the negligible impact of naturally incoming isolates on the epidemics observed inside the four glasshouse compartments.


Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1164-1164
Author(s):  
M. C. Rivera ◽  
S. E. Lopez

Pansy (Viola × wittrockiana) is an ornamental annual plant produced as a potted plant in greenhouses around Buenos Aires, Argentina. Flower rot with signs of gray mold was observed on pansy cv. Crown during the autumn of 2003. Diseased tissues were surface sterilized by immersion in 2% NaOCl for 1 min, placed on 2% potato dextrose agar (PDA), and incubated at 22°C. Fungal mycelia were initially white and became gray after 72 h. After 4 days, colonies were 4 cm in diameter and sporulated profusely. Black sclerotia developed after 7 days. Mycelia were septate with dark branched conidiophores bearing unicellular, ellipsoid, hyaline conidia that measured 8 to 12 × 6 to 8 μm in botryose heads. These characteristics agree with Botrytis cinerea Pers.:Fr. (1). Pathogenicity tests were performed by spraying 10 healthy pansy plants during bloom with 3 ml of a conidial suspension (106 conidia per ml) per plant. Controls were treated with sterilized distilled water only. Plants were covered with plastic bags for 2 days and incubated at 18 to 22°C. The flowers developed water-soaked lesions between 4 and 6 days after inoculation. Fifty percent of the flowers were pendulous because flower blight reached the peduncle. The pathogen was reisolated from diseased flowers after superficial sterilization with 2% NaOCl and isolated on PDA. Gray mold has a rapid development during bloom, and the pathogen was able to enter undamaged flower tissues. No disease symptoms were observed on leaves. This report adds pansy as a new host of B. cinerea to a previous list of ornamentals grown in Argentina where gray mold was observed. Reference: (1) M. V. Ellis and J. M. Waller. Sclerotinia fuckeliana (condial state: Botrytis cinerea). No. 431 in: Descriptions of Pathogenic Fungi and Bacteria, CMI, Kew, Surrey, UK, 1974.


Author(s):  
Y.G. Mikheev ◽  
I.A. Vanyushkina ◽  
V.I. Leunov

Представлены результаты изучения исходного материала столовой моркови и свеклы разного эколого-географического происхождения по устойчивости к патогенной флоре. Для условий Дальнего Востока созданы высокопродуктивные, устойчивые к патогенам сорта и гибриды столовых корнеплодов.The article presents the results of the study of the source material of table carrots and beets of different ecological and geographical origin for resistance to diseases. Geniuses for breeding of high-productive variety samples of root crops with rather high resistance to diseases in the conditions of the South of the Russian Far East are revealed.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 717
Author(s):  
Niels Demaître ◽  
Geertrui Rasschaert ◽  
Lieven De Zutter ◽  
Annemie Geeraerd ◽  
Koen De Reu

The purpose of this study was to investigate the L. monocytogenes occurrence and genetic diversity in three Belgian pork cutting plants. We specifically aim to identify harborage sites and niche locations where this pathogen might occur. A total of 868 samples were taken from a large diversity of food and non-food contact surfaces after cleaning and disinfection (C&D) and during processing. A total of 13% (110/868) of environmental samples tested positive for L. monocytogenes. When looking in more detail, zone 3 non-food contact surfaces were contaminated more often (26%; 72/278) at typical harborage sites, such as floors, drains, and cleaning materials. Food contact surfaces (zone 1) were less frequently contaminated (6%; 25/436), also after C&D. PFGE analysis exhibited low genetic heterogeneity, revealing 11 assigned clonal complexes (CC), four of which (CC8, CC9, CC31, and CC121) were predominant and widespread. Our data suggest (i) the occasional introduction and repeated contamination and/or (ii) the establishment of some persistent meat-adapted clones in all cutting plants. Further, we highlight the importance of well-designed extensive sampling programs combined with genetic characterization to help these facilities take corrective actions to prevent transfer of this pathogen from the environment to the meat.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 89
Author(s):  
Jiayu Li ◽  
Fuxian Yang ◽  
Ruobing Liang ◽  
Sheng Guo ◽  
Yaqiong Guo ◽  
...  

Cryptosporidiumfelis is an important cause of feline and human cryptosporidiosis. However, the transmission of this pathogen between humans and cats remains controversial, partially due to a lack of genetic characterization of isolates from cats. The present study was conducted to examine the genetic diversity of C. felis in cats in China and to assess their potential zoonotic transmission. A newly developed subtyping tool based on a sequence analysis of the 60-kDa glycoprotein (gp60) gene was employed to identify the subtypes of 30 cat-derived C. felis isolates from Guangdong and Shanghai. Altogether, 20 C. felis isolates were successfully subtyped. The results of the sequence alignment showed a high genetic diversity, with 13 novel subtypes and 2 known subtypes of the XIXa subtype family being identified. The known subtypes were previously detected in humans, while some of the subtypes formed well-supported subclusters with human-derived subtypes from other countries in a phylogenetic analysis of the gp60 sequences. The results of this study confirmed the high genetic diversity of the XIXa subtype family of C. felis. The common occurrence of this subtype family in both humans and cats suggests that there could be cross-species transmission of C. felis.


2021 ◽  
Vol 22 (4) ◽  
pp. 1694
Author(s):  
Jiao Sun ◽  
Chen-Hao Sun ◽  
Hao-Wu Chang ◽  
Song Yang ◽  
Yue Liu ◽  
...  

Cyclophilin (Cyp) and Ca2+/calcineurin proteins are cellular components related to fungal morphogenesis and virulence; however, their roles in mediating the pathogenesis of Botrytis cinerea, the causative agent of gray mold on over 1000 plant species, remain largely unexplored. Here, we show that disruption of cyclophilin gene BcCYP2 did not impair the pathogen mycelial growth, osmotic and oxidative stress adaptation as well as cell wall integrity, but delayed conidial germination and germling development, altered conidial and sclerotial morphology, reduced infection cushion (IC) formation, sclerotial production and virulence. Exogenous cyclic adenosine monophosphate (cAMP) rescued the deficiency of IC formation of the ∆Bccyp2 mutants, and exogenous cyclosporine A (CsA), an inhibitor targeting cyclophilins, altered hyphal morphology and prevented host-cell penetration in the BcCYP2 harboring strains. Moreover, calcineurin-dependent (CND) genes are differentially expressed in strains losing BcCYP2 in the presence of CsA, suggesting that BcCyp2 functions in the upstream of cAMP- and Ca2+/calcineurin-dependent signaling pathways. Interestingly, during IC formation, expression of BcCYP2 is downregulated in a mutant losing BcJAR1, a gene encoding histone 3 lysine 4 (H3K4) demethylase that regulates fungal development and pathogenesis, in B. cinerea, implying that BcCyp2 functions under the control of BcJar1. Collectively, our findings provide new insights into cyclophilins mediating the pathogenesis of B. cinerea and potential targets for drug intervention for fungal diseases.


2017 ◽  
Vol 107 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Wayne M. Jurick ◽  
Otilia Macarisin ◽  
Verneta L. Gaskins ◽  
Eunhee Park ◽  
Jiujiang Yu ◽  
...  

Botrytis cinerea causes gray mold and is an economically important postharvest pathogen of fruit, vegetables, and ornamentals. Fludioxonil-sensitive B. cinerea isolates were collected in 2011 and 2013 from commercial storage in Pennsylvania. Eight isolates had values for effective concentrations for inhibiting 50% of mycelial growth of 0.0004 to 0.0038 μg/ml for fludioxonil and were dual resistant to pyrimethanil and thiabendazole. Resistance was generated in vitro, following exposure to a sublethal dose of fludioxonil, in seven of eight dual-resistant B. cinerea isolates. Three vigorously growing B. cinerea isolates with multiresistance to postharvest fungicides were further characterized and found to be osmosensitive and retained resistance in the absence of selection pressure. A representative multiresistant B. cinerea strain caused decay on apple fruit treated with postharvest fungicides, which confirmed the in vitro results. The R632I mutation in the Mrr1 gene, associated with fludioxonil resistance in B. cinerea, was not detected in multipostharvest fungicide-resistant B. cinerea isolates, suggesting that the fungus may be using additional mechanisms to mediate resistance. Results from this study show for the first time that B. cinerea with dual resistance to pyrimethanil and thiabendazole can also rapidly develop resistance to fludioxonil, which may pose control challenges in the packinghouse environment and during long-term storage.


Sign in / Sign up

Export Citation Format

Share Document